Analysis of the Structure of Samples of Rail Steels of the New Generation with Improved Operational Properties. Pt. 2

O. I. Babachenko$^{1}$, G. A. Kononenko$^{1}$, R. V. Podolskyi$^{1,2}$, O. A. Safronova$^{1}$, O. S. Baskevich$^{3}$

$^{1}$Z. I. Nekrasov Iron and Steel Institute, NAS of Ukra, 1 Academika Starodubova Square, UA-49107 Dnipro, Ukraine
$^{2}$Ukrainian State University of Science and Technologies, 4 Gagarin Ave., UA-49100 Dnipro, Ukraine
$^{3}$SHEI ‘Ukrainian State University of Chemical Technology’, 8 Gagarin Ave., UA-49005 Dnipro, Ukraine

Received: 24.08.2022; final version - 30.09.2022. Download: PDF

The analysis of domestic and global regulatory and technical documentation for railway rails shows that pre-eutectoid medium-carbon and high-carbon as well as post-eutectoid steels are used for the production of serial rails in world practice. According to the degree of alloying, both carbon and micro-alloyed, alloyed alloys are used. Thus, the issue of developing railway rails of a new generation with the use of boron microalloying and the effect of heat-treatment regimes on the structural component of steel to obtain a high complex of mechanical properties is an actual direction of research. Boron dissolved in the matrix increases the incubation period of the nucleation of a new phase, decreases the temperature of the beginning of ferrite formation, as a result, suppressing the decomposition of austenite by the diffusion mechanism. The goal of the work: the study of the microstructure and fine structure of finely dispersed pearlite in steels for high-strength rails with hardness at the level of world requirements. Samples of test steel, which were pre-deformed and heat-treated according to test regimes, which differed in terms of cooling from 0.52 to 5.1°C/s, are studied. Based on the results of x-ray phase analysis after heat treatment of the experimental steels, the presence of Fe$_{3}$C, Mn$_{7}$C$_{3}$, and FeCr formation is revealed, which have maxima at the same angles as $\alpha$-Fe (matrix). When comparing and analysing the obtained data, it is established that the formation of MnSi, CrMn is present in all experimental steels, thus, they do not have a significant effect on the mechanical properties. As established, during accelerated cooling from a temperature of 900°C followed by tempering at 200°C for 120 min in laboratory test steels, internal stresses are relieved. At the same time, the microstructure corresponds to a highly-dispersed pearlite that meets the requirements of foreign standards. Experimental rail steel with 0.90% С, 0.39% Si, 0.89% Mn, 0.09% Cr, 0.010% Mo, 00035% B, 0.0123% N and with an increased carbon content has the following mechanical properties: $\sigma_{\textrm{в}}$ = 1295 MPa, $\sigma_{0.2}$ = 816 MPa, $\delta_{5}$ = 9.8%, $\psi$ = 11.4%, $KCU$ = 17.25 J/cm$^{2}$, which meet the requirements of EN 13674:1-2011 (R400НТ).

Key words: rail steel, microstructure, microalloying, heat treatment, mechanical tests, x-ray structural analysis.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i01/0137.html

DOI: https://doi.org/10.15407/mfint.45.01.0137

PACS: 61.05.cp, 61.72.Hh, 62.20.M-, 62.20.Qp, 81.40.Lm, 81.40.Np, 81.70.Jb

Citation: O. I. Babachenko, G. A. Kononenko, R. V. Podolskyi, O. A. Safronova, and O. S. Baskevich, Analysis of the Structure of Samples of Rail Steels of the New Generation with Improved Operational Properties. Pt. 2, Metallofiz. Noveishie Tekhnol., 45, No. 1: 137—156 (2023) (in Ukrainian)


REFERENCES
  1. A. P. Gulyaev, Metallovedenie [Metal Science] (Moscow: Metallurgiya: 1977) (in Russian).
  2. Yu. M. Lakhtin, Metallovedenie i Termicheskaya Obrabotka Metallov [Metal Science and Heat Treatment of Metals] (Moscow: Metallurgiya: 1976) (in Russian).
  3. O. I. Babachenko, K. H. D'omina, H. A. Kononenko, Zh. A. Dement'yeva, R. V. Podol's'kyy, and O. A. Safronova, Metallofiz. Noveishie Tekhnol., 43, No. 11: 1537 (2021) (in Ukrainian). Crossref
  4. I. G. Uzlov, M. I. Gasik, A. T. Esaulov, N. G. Miroshnichenko, and Yu. S. Proydak, Kolesnaya Stal' [Wheel Steel] (Kyiv: Tekhnika: 1985) (in Russian).
  5. Yu. I. Kokovikhin, Tekhnologiya Staleprovolochnogo Proizvodstva [Technology of Steel Wire Production] (Kyiv: Institut Sistemnogo Issledovaniya Obrazovaniya: 1995) (in Russian).
  6. E. A. Gudremon, Spetsial'nye Stali [Special Steel] (Moscow: Metallurgiya: 1966) (in Russian).
  7. O. I. Babachenko, H. A. Kononenko, O. V. Roslyk, K. M. Maystrenko, and R. V. Podol's'kyy, Rozrobka Staley dlya Metaloproduktsiyi Zaliznychnoho Pryznachennya [Development of Steels for Railway Metal Production] (Dnipro: Dominanta-prynt: 2020) (in Ukrainian).
  8. I. Hlavatý, M. Sigmund, L. Krejcí, P. Mohyla, Mater. Eng., 16, Iss. 4: 50. (2009).
  9. O. I. Babachenko, H. A. Kononenko, R. V. Podolskyi, and O. A. Safronova, Mater. Sci., 56: 814 (2021). Crossref
  10. O. I. Babachenko, G. A. Kononenko, and R. V.Podolskyi, Sci. Innov., 17, No. 4: 25 (2021). Crossref
  11. N. P. Lyakishev, Yu. L. Pliner, and S. I. Lappo, Borsoderzhashchie Stali i Splavy [Boron Steels and Alloys] (Moscow: Metallurgiya: 1986) (in Russian).
  12. M. I. Gasik, N. P. Lyakishev, and B. I. Emlin, Teoriya i Tekhnologiya Proizvodstva Ferrosplavov [Theory and Technology of the Production of Ferroalloys] (Moscow: Metallurgiya: 1988) (in Russian).
  13. D. A. Litvinenko, Stal', 4: 357 (1964) (in Russian).
  14. W. Berry and M. Thomas, Wire Industry, 6: 1479 (1979).
  15. I. Y. Prikhod'ko, E. V. Parusov, O. V. Parusov, I. N. Chuiko, and E. S. Klemeshov, Steel in Translation, 50: 481 (2020). Crossref
  16. S. M. Vinarov, Bor, Kal'tsiy i Tsirkoniy v Chugune i Stali [Boron, Calcium and Zirconium in Cast Iron and Steel] (Moscow: Metallurgizdat: 1961) (in Russian).
  17. E. V. Parusov, V. A. Lutsenko, I. N. Chuiko, and O. V. Parusov, Chernye Metally, 9: 39 (2020).
  18. L. Mayer, Kh. Shtrasburger, and Kh. Shnayder, Mikrolegirovanie Niobiem, Vanadiem, Titanom, Tsirkoniem i Borom i ego Vliyanie na Svoystva Sovremennykh Staley dlya Avtomobilestroeniya [Microalloying by Niobium, Vanadium, Titanium, Zirconium and Boron and its Influence on the Properties of Modern Steels for Automotive Industry] (Moscow: Mashinostroenie: 1988), p. 63 (in Russian).
  19. Y. Ryuichi, K. Yuichi, and F. Yasuto, Welding Int., 28, Iss. 7: 510 (2014). Crossref
  20. M. Fujii, H. Nakanowatari, and K. Nariai, JFE Technical Report, 20: 159 (2015).
  21. K. Saita, K. Karimine, M. Ueda, K. Iwano, T. Yamamoto, and K. Hiroguchi, Nippon Steel and Sumitomo Metal Technical Report, 105: 84 (2013).
  22. B. Dahl, B. Mogard, B. Gretoft, and B. Ulander, Svetsaren, 50: 10 (1995).
  23. T. Takimoto, Tetsu-to-Hagane, 70, Iss. 10: 40 (1984). Crossref
  24. H. Tachikawa, T. Uneta, H. Nishimoto, Y. Sasaki, and J. Yanal, Nippon Steel Technical Report, No. 82: 35 (2000).
  25. M. Okumura, K. Karimine, K. Uchino, and N. Yurioka, Nippon Steel Technical Report, No. 65: 41 (1995).
  26. S. V. Adzhamskyi, H. A. Kononenko, and R. V. Podolskyi, Kosmichna Nauka i Tekhnolohiya, 27, No. 6 (133): 105 (2021) (in Ukrainian). Crossref
  27. S. V. Adzhamskyy, G. A. Kononenko, and R. V. Podolskyi, Metallofiz. Noveishie Tekhnol., 43, No. 7: 909 (2021) (in Russian). Crossref
  28. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, Rentgenograficheskiy i Elektronnoopticheskiy Analiz [X-Ray and Electron-Optical Analysis] (Moscow: Metallurgiya: 1970) (in Russian).
  29. O. I. Babachenko, H. A. Kononenko, R. V. Podolskyi, O. A. Safronova, and A. O. Taranenko, Metallofiz. Noveishie Tekhnol., 44, No. 12: 1661 (2022) (in Ukrainian). Crossref