Creation and Comparison of Properties of Composites Based on Ceramics Filled with Straight or Helical Carbon Nanotubes for CJP 3D Printing Technology
Ol. D. Zolotarenko$^{1,2}$, E. P. Rudakova$^{1,2}$, An. D. Zolotarenko$^{1,2}$, N. Y. Akhanova$^{3,4}$, M. Ualkhanova$^{4}$, D. V. Shchur$^{2}$, M. T. Gabdullin$^{3}$, T. V. Myronenko$^{2}$, A. D. Zolotarenko$^{2}$, M. V. Chymbai$^{1,2}$, I. V. Zagorulko$^{5}$
$^{1}$O. O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., UA-03164 Kyiv, Ukraine
$^{2}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine
$^{3}$Kazakh-British Technical University, 59 Tole bi Str., 050000 Almaty, Республіка Казахстан
$^{4}$National Nanotechnology Laboratory, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Republic of Kazakhstan
$^{5}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
Received: 18.10.2022; final version - 19.11.2022.
Download: PDF
This paper describes an experiment that made it possible to obtain helical multiwalled carbon nanotubes (НMWCNTs) with a diameter of 30–60 nm by pyrolysis of hydrocarbons and trapping the product with a liquid seal. For the purpose of comparative analysis, the paper also considers the synthesis of straight multiwalled carbon nanotubes (SMWCNTs). Such carbon nanotubes after preparation can be used in CJP 3$D$ printing technology. All obtained materials are examined using the method of transmission electron microscopy. The paper considers the processes of synthesis of HMWCNTs and SMWCNTs. An assessment of the strength characteristics of 3$D$ products from various composites based on them after discrete 3$D$ printing and sintering is carried out. The conditions for the synthesis of carbon nanostructures by the pyrolytic method are described, methods for preparing synthesis products for their subsequent using in 3$D$ printers of CJP, FDM, SLA, SLS technologies are developed, and the technology for preparing mechanical mixtures for 3$D$ printers of CJP technology is developed. In addition, a technique for creating 3$D$ products from composite materials is considered. The bending strength of 3$D$ printed ceramics reinforced with carbon nanotubes is measured. The dependence of the bending strength of the obtained ceramics on the amount of MWCNTs in the composite is established. The resistance to mechanical destruction of composites (MWCNTs–Al$_{2}$O$_{3}$) obtained using helical and straight MWCNTs is studied. At the same time, it is shown that when using SMWNT, after the integrity of the composite is broken, the parts of the product do not crumble, but remain united even under load.
Key words:
helical multiwalled carbon nanotubes (HMWCNTs), carbon nanostructures, carbon nanomaterials, carbon nanotubes, single-walled carbon nanotubes, multiwalled carbon nanotubes (MWCNTs), composite, clay, ceramics, Al$_{2}$O$_{3}$, pyrolysis, quartz reactor, Ni, Cu, catalyst, nitrogen (N$_{2}$), toluene (C$_{7}$H$_{8}$), 3D printing, CJP technology, FDM, SLA.
URL:
https://mfint.imp.kiev.ua/en/abstract/v45/i02/0199.html
DOI:
https://doi.org/10.15407/mfint.45.02.0199
Citation:
Ol. D. Zolotarenko, E. P. Rudakova, An. D. Zolotarenko, N. Y. Akhanova, M. Ualkhanova, D. V. Shchur, M. T. Gabdullin, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Creation and Comparison of Properties of Composites Based on Ceramics Filled with Straight or Helical Carbon Nanotubes for CJP 3D Printing Technology, Metallofiz. Noveishie Tekhnol., 45, No. 2: 199—216 (2023)
REFERENCES
- V. A. Lavrenko, I. A. Podchernyaeva, D. V. Shchur, An. D. Zolotarenko, and Al. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56: 504 (2018). Crossref
- Ol. D. Zolotarenko, M. N. Ualkhanova, E. P.Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, and O. O. Havryliuk, Chemistry, Phys. Tech. Surf., 13, No. 2: 209 (2022).
- Z. A. Matysina, Ol. D. Zolotarenko, M. Ualkhanova, O. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, O. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Prog. Phys. Met., 23, No. 3: 528 (2022).
- A. D. Zolotarenko, A. D. Zolotarenko, E. P. Rudakova, S. Y. Zaginaichenko, A. G. Dubovoy, D. V. Schur, and Y. A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2007), p. 137.
- D. V. Schur, A. G. Dubovoy, S. Yu. Zaginaichenko, V. M. Adejev, A. V. Kotko, V. A. Bogolepov, A. F. Savenko, A. D. Zolotarenko, S. A. Firstov and V. V. Skorokhod, NATO Security through Science Series A: Chemistry and Biol-ogy: 199 (2007).
- S. Yu. Zaginaichenko, D. V. Schur, and Z. A. Matysina, Carbon, 41, Iss. 7: 1349 (2003). Crossref
- V. A. Lavrenko, D. V. Shchur, A. D. Zolotarenko, and A. D. Zolotarenko, Pow-der Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019). Crossref
- V. M. Gun'ko, V. V. Turov, D. V. Schur, V. I. Zarko, G. P. Prykhod'ko, T. V. Krupska, A. P. Golovan, J. Skubiszewska-Zięba, B. Charmas, and M. T. Kartel, Chem. Phys., 459: 172 (2015). Crossref
- M. M. Nishchenko, S. P. Likhtorovich, D. V. Schur, A. G. Dubovoy, and T. A. Rashevskaya, Carbon, 41, No. 7: 1381 (2003). Crossref
- D. V. Schur, S. Yu. Zaginaichenko, E. A. Lysenko, T. N. Golovchenko, and N. F. Javadov, Carbon Nanomaterials in Clean Energy Hydrogen Systems, (Dordrecht: Springer: 2008), p. 53.
- D. V. Schur, S. Yu. Zaginaichenko, A. D. Zolotarenko, and T. N. Veziroglu, Carbon Nanomaterials in Clean Energy Hydrogen Systems, (Dordrecht: Springer: 2008), p. 85.
- O. D. Zolotarenko, O. P. Rudakova, M. T. Kartel, H. O. Kaleniuk, A. D. Zolotarenko, D. V. Schur, and Y. O. Tarasenko, Surface, 12, No. 27: 263 (2020) (in Ukrainian).
- N. E. Ahanova, D. V. Schur, N. A. Gavriluk, M. T. Gabdullin, N. S. Anikina, An. D. Zolotarenko, O. Ya. Krivushhenko, Al. D. Zolotarenko, B. M. Gorelov, E. Erlanuli, and D. G. Batrishev, Chemistry, Physics and Technology of Sur-face, 11, No. 3: 429 (2020) (in Ukrainian).
- Z. A. Matysina, Ol. D. Zolotarenko, O. P. Rudakova, N. Y. Akhanova, A. P. Pomytkin, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrylyuk, A. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Prog. Phys. Met., 23, No. 3: 510 (2022).
- N. Ye. Akhanova, D. V. Shchur, A. P. Pomytkin, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21: 2435 (2021). Crossref
- O. D. Zolotarenko, E. P. Rudakova, A. D. Zolotarenko, N. Y. Akhanova, M. N. Ualkhanova, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, Yu. O. Tarasenko, and O. O. Havryliuk, Chemistry, Physics and Technology of Surface, 13, No. 3: 259 (2022) (in Ukrainian).
- D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, O. P. Zolotarenko, M. V. Chimbai, N. Y. Akhanova, M. Sultangazina, and E. P. Zolotarenko, Phys. Sci. Tech., 6, No. 1-2: 46 (2019). Crossref
- M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, and S. Zaginaichenko, Diamond Relat. Mater., 32: 72 (2013). Crossref
- A. D. Zolotarenko, A. D. Zolotarenko, V. A. Lavrenko, S. Y. Zaginaichenko, N. A. Shvachko, O. V. Milto, and Y. A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II: 127 (2011). Crossref
- N. Akhanova, S. Orazbayev, M. Ualkhanova, A. Y. Perekos, A. G. Dubovoy, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. T. Gabdullin, and T. S. Ramazanov, J. Nanosci. Nanotech. Applications, 3, No. 3: 1 (2019).
- Ol. D. Zolotarenko, O. P. Rudakova, N. E. Ahanova, An. D. Zolotarenko, D. V. Schur, M. T. Gabdullin, M. Ualhanova, N. A. Gavriluk, M. V. Chimbaj, Yu. O. Tarasenko, I. V. Zagorulko, and O. D. Zolotarenko, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417 (2021) (in Ukrainian).
- Ol. D. Zolotarenko, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, M. Sultangazina, N. A. Gavrylyuk, M. V. Chymbai, A. D. Zolotarenko, I. V. Zagorulko, and Yu. O. Tarasenko, Metallofiz. Noveishie Tekhnol., 44, No. 3: 343 (2022) (in Ukrainian).
- D. V. Schur, S. Y. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, and N. S. Anikina, Int. J. Hydrogen Energy, 36, No. 1: 1143 (2011). Crossref
- A. F. Savenko, V. A. Bogolepov, K. A. Meleshevich, S. Yu. Zaginaichenko, D. V. Schur, M. V. Lototsky, V. K. Pishuk, L. O. Teslenko, and V. V. Skorokhod, Hydrogen Materials Science and Chemistry of Carbon Nano-materials: 365 (2007).
- D. V. Schur, S. Zaginaichenko, and T. N. Veziroglu, Int. J. Hydrogen Energy, 33, Iss. 13: 3330 (2008). Crossref
- D. V. Schur, M. T. Gabdullin, S. Yu. Zaginaichenko, T. N. Veziroglu, M. V. Lototsky, V. A. Bogolepov, and A. F. Savenko, Int. J. Hydrogen Energy, 41, Iss. 1: 401(2016). Crossref
- D. V. Schur, S. Yu. Zaginaichenko, and T. N. Veziroglu, Int. J. Hydrogen Ener-gy, 40, Iss. 6: 2742 (2015). Crossref
- Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Shchur, A. Viziroglu, T. N. Viziroglu, M. T. Gabdullin, N. F. Javadov, An. D. Zolotarenko and Al. D. Zolotarenko, Gidrogen v Kristallah [Hydrogen in Crystals] (Kyiv: Pub-lishing House 'KIM': 2017) (in Russian).
- D. V. Schur, S. Yu. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, N. S. Anikina, A. D. Zolotarenko, Z. A. Matysina, T. N. Veziroglu and N. E. Skryabina, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II: 87 (2011). Crossref
- Z. A. Matysina, An. D. Zolonarenko, Al. D. Zolonarenko, N. A. Gavrylyuk, A. Veziroglu, T. N. Veziroglu, A. P. Pomytkin, D. V. Schur, and M. T. Gabdullin, Features of the Interaction of Hydrogen with Metals, Alloys and Compounds. Hydrogen Atoms in Crystalline Solids (Kyiv: 'KIM' Publishing House: 2022).
- D. V. Schur, M. T. Gabdullin, V. A. Bogolepov, A. Veziroglu, S. Yu. Zaginaichenko, A. F. Savenko, and K. A. Meleshevich, Int. J. Hydrogen Energy, 41, Iss. 3: 1811 (2016). Crossref
- Z. A. Matysina and D. V. Shchur, Russ. Phys. J., 44: 1237 (2001). Crossref
- V. I. Trefilov, D. V. Schur, V. K. Pishuk, S. Yu. Zaginaichenko, A. V. Choba, and N. R. Nagornaya, Renewable Energy, 16, Iss. 1-4: 757 (1999). Crossref
- A. D. Zolotarenko, A. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, N. A. Gavrylyuk, D. V. Schur, T. S. Ramazanov, and M. T. Gabdullin, Int. J. Hydrogen Energy, 47, Iss. 11: 7281 (2022). Crossref
- Ol. D. Zolotarenko, O. P. Rudakova, An. D. Zolotarenko, D. V. Shchur, N. A. Gavrilyuk, N. T. Kartel, O. D. Zolotarenko, and V. A. Mashira, Recent Contributions to Physics, 81, No. 2: 68 (2022) (in Russian). Crossref
- Z. A. Matysina, O. S. Pogorelova, S. Yu. Zaginaichenko, and D. V. Schur, J. Phys. Chem. Solids, 56, No. 1: 9 (1995). Crossref
- Z. A. Matysina, S. Yu. Zaginaichenko, and D. V. Schur, Int. J. Hydrogen Ener-gy, 21, Is. 11-12: 1085 (1996). Crossref
- D. V. Schur, S. Yu. Zaginaichenko, Z. A. Matysina, I. Smityukh, and V. K. Pishuk, J. Alloys Comd., 330-332: 70 (2002). Crossref
- Yu. M. Lytvynenko and D. V. Schur, Renewable Energy, 16, No. 1: 753 (1999). Crossref
- D. V. Schur, A. A. Lyashenko, V. M. Adejev, V. B. Voitovich, and S. Yu. Zaginaichenko, Int. J. Hydrogen Energy, 20, Iss. 5: 405 (1995).
- D. V. Schur, V. A. Lavrenko, V. M. Adejev, and I. E. Kirjakova, Int. J. Hydro-gen Energy, 19, Iss. 3: 265 (1994). Crossref
- Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Shchur, and M. T. Gabdullin, Russ. Phys. J., 59, No. 2: 177 (2016). Crossref
- S. Yu. Zaginaichenko, Z. A. Matysina, D. V. Schur, L. O. Teslenko, and A. Veziroglu, Int. J. Hydrogen Energy, 36, Iss. 1: 1152 (2011). Crossref
- S. Yu. Zaginaichenko, D. A. Zaritskii, D. V. Schur, Z. A. Matysina, T. N. Veziroglu, M. V. Chymbai, and L. I. Kopylova, Int. J. Hydrogen Energy, 40, Iss. 24: 7644 (2015). Crossref
- Z. A. Matysina, S. Yu. Zaginaichenko, and D. V. Shchur, Fiz. Met. Metalloved., 114, No. 4: 308 (2013). Crossref
- Z. A. Matysina, N. A. Gavrylyuk, M. T. Kartel, A. Veziroglu, T. N. Veziroglu, A. P. Pomytkin, D. V. Schur, T. S. Ramazanov, M. T. Gabdullin, An. D. Zolotarenko, Al. D. Zolotarenko, and N. A. Shvachko, Int. J. Hydrogen Energy, 46, Iss. 50: 25520 (2021). Crossref
- D. V. Shchur, S. Yu. Zaginaichenko, A. Veziroglu, T. N. Veziroglu, N. A. Gavrylyuk, A. D. Zolotarenko, M. T. Gabdullin, T. S. Ramazanov, Al. D. Zolotarenko, and An. D. Zolotarenko, Russ. Phys. J., 64: 89 (2021). Crossref
- S. Yu. Zaginaichenko, Z. A. Matysina, D. V. Schur, and A. D. Zolotarenko, Int. J. Hydrogen Energy, 37, Iss. 9: 7565 (2012). Crossref
- S. A. Tikhotskii, I. V. Fokin, and D. V. Schur, Izvestiya, Physics of the Solid Earth, 47, No. 4: 327 (2011). Crossref
- A. D. Zolotarenko, A. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, D. V. Schur, N. A. Gavrylyuk, T. S. Ramazanov, N. Y. Akhanova, and M. T. Gabdullin, Int. J. Hydrogen En-ergy, 47, Iss. 11: 7310 (2022). Crossref
- Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Schur, T. N. Veziroglu, A. Veziroglu, M. T. Gabdullin, Al. D. Zolotarenko, and An. D. Zolotarenko, Int. J. Hydrogen Energy, 43, Iss. 33: 16092 (2018). Crossref
- Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, M. T. Gabdulin, L. I. Kopylova, and T. I. Shaposhnikova, Russ. Phys. J., 61: 2244 (2019). Crossref
- D. V. Schur, A. Veziroglu, S. Yu. Zaginaychenko, Z. A. Matysina, T. N. Veziroglu, M. T. Gabdullin, T. S. Ramazanov, A. D. Zolonarenko, and A. D. Zolonarenko, Int. J. Hydrogen Energy, 44, Iss. 45: 24810 (2019). Crossref
- Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, and M. T. Gabdullin, Russ. Phys. J., 61: 253 (2018). Crossref
- An. D. Zolotarenko, Al. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, N. A. Gavrylyuk, D. V. Schur, T. S. Ramazanov, and M. T. Gabdullin, Int. J. Hydrogen Energy, 44, Iss. 11: 7281 (2021). Crossref
- S. E. Porozova, L. D. Sirotenko, V. O. Shokov, and A. A. Gurov, Refract. Ind. Ceram., 57: 321 (2016). Crossref
- K. Ando, B.-S. Kim, M.-C. Chu, S. Saitou, and S. Sato, Key Engineering Mate-rials, 247: 175 (2003). Crossref
- D. Mittal, J. Hostaša, L. Silvestroni, L. Esposito, A. Mohan, R. Kumar, and S. K. Sharma, J. European Ceramic Society, 42, Iss. 14: 6303 (2022). Crossref