Creation and Comparison of Properties of Composites Based on Ceramics Filled with Straight or Helical Carbon Nanotubes for CJP 3D Printing Technology

Ol. D. Zolotarenko$^{1,2}$, E. P. Rudakova$^{1,2}$, An. D. Zolotarenko$^{1,2}$, N. Y. Akhanova$^{3,4}$, M. Ualkhanova$^{4}$, D. V. Shchur$^{2}$, M. T. Gabdullin$^{3}$, T. V. Myronenko$^{2}$, A. D. Zolotarenko$^{2}$, M. V. Chymbai$^{1,2}$, and I. V. Zagorulko$^{5}$

$^{1}$Институт химии поверхности им. А. А. Чуйко НАН Украины, ул. Генерала Наумова, 17, 03164 Киев, Украина
$^{2}$Институт проблем материаловедения им. И. Н. Францевича НАН Украины, ул. Омельяна Прицака, 3, 03142 Киев, Украина
$^{3}$Казахстанско-Британский технический университет, ул. Толе би, 59, 050000 Алматы, Республика Казахстан
$^{4}$Национальная нанотехнологическая лаборатория, Казахский национальный университет имени Аль-Фараби, просп. Аль-Фараби, 71, 050040 Алматы, Республика Казахстан
$^{5}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина

Получена: 18.10.2022; окончательный вариант - 19.11.2022. Скачать: PDF

This paper describes an experiment that made it possible to obtain helical multiwalled carbon nanotubes (НMWCNTs) with a diameter of 30–60 nm by pyrolysis of hydrocarbons and trapping the product with a liquid seal. For the purpose of comparative analysis, the paper also considers the synthesis of straight multiwalled carbon nanotubes (SMWCNTs). Such carbon nanotubes after preparation can be used in CJP 3$D$ printing technology. All obtained materials are examined using the method of transmission electron microscopy. The paper considers the processes of synthesis of HMWCNTs and SMWCNTs. An assessment of the strength characteristics of 3$D$ products from various composites based on them after discrete 3$D$ printing and sintering is carried out. The conditions for the synthesis of carbon nanostructures by the pyrolytic method are described, methods for preparing synthesis products for their subsequent using in 3$D$ printers of CJP, FDM, SLA, SLS technologies are developed, and the technology for preparing mechanical mixtures for 3$D$ printers of CJP technology is developed. In addition, a technique for creating 3$D$ products from composite materials is considered. The bending strength of 3$D$ printed ceramics reinforced with carbon nanotubes is measured. The dependence of the bending strength of the obtained ceramics on the amount of MWCNTs in the composite is established. The resistance to mechanical destruction of composites (MWCNTs–Al$_{2}$O$_{3}$) obtained using helical and straight MWCNTs is studied. At the same time, it is shown that when using SMWNT, after the integrity of the composite is broken, the parts of the product do not crumble, but remain united even under load.

Ключевые слова: helical multiwalled carbon nanotubes (HMWCNTs), carbon nanostructures, carbon nanomaterials, carbon nanotubes, single-walled carbon nanotubes, multiwalled carbon nanotubes (MWCNTs), composite, clay, ceramics, Al$_{2}$O$_{3}$, pyrolysis, quartz reactor, Ni, Cu, catalyst, nitrogen (N$_{2}$), toluene (C$_{7}$H$_{8}$), 3D printing, CJP technology, FDM, SLA.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i02/0199.html

PACS: 62.23.Pq, 82.45.Xy


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. V. A. Lavrenko, I. A. Podchernyaeva, D. V. Shchur, An. D. Zolotarenko, and Al. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56: 504 (2018). Crossref
  2. Ol. D. Zolotarenko, M. N. Ualkhanova, E. P.Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, and O. O. Havryliuk, Chemistry, Phys. Tech. Surf., 13, No. 2: 209 (2022).
  3. Z. A. Matysina, Ol. D. Zolotarenko, M. Ualkhanova, O. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, O. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Prog. Phys. Met., 23, No. 3: 528 (2022).
  4. A. D. Zolotarenko, A. D. Zolotarenko, E. P. Rudakova, S. Y. Zaginaichenko, A. G. Dubovoy, D. V. Schur, and Y. A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2007), p. 137.
  5. D. V. Schur, A. G. Dubovoy, S. Yu. Zaginaichenko, V. M. Adejev, A. V. Kotko, V. A. Bogolepov, A. F. Savenko, A. D. Zolotarenko, S. A. Firstov and V. V. Skorokhod, NATO Security through Science Series A: Chemistry and Biol-ogy: 199 (2007).
  6. S. Yu. Zaginaichenko, D. V. Schur, and Z. A. Matysina, Carbon, 41, Iss. 7: 1349 (2003). Crossref
  7. V. A. Lavrenko, D. V. Shchur, A. D. Zolotarenko, and A. D. Zolotarenko, Pow-der Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019). Crossref
  8. V. M. Gun’ko, V. V. Turov, D. V. Schur, V. I. Zarko, G. P. Prykhod’ko, T. V. Krupska, A. P. Golovan, J. Skubiszewska-Zięba, B. Charmas, and M. T. Kartel, Chem. Phys., 459: 172 (2015). Crossref
  9. M. M. Nishchenko, S. P. Likhtorovich, D. V. Schur, A. G. Dubovoy, and T. A. Rashevskaya, Carbon, 41, No. 7: 1381 (2003). Crossref
  10. D. V. Schur, S. Yu. Zaginaichenko, E. A. Lysenko, T. N. Golovchenko, and N. F. Javadov, Carbon Nanomaterials in Clean Energy Hydrogen Systems, (Dordrecht: Springer: 2008), p. 53.
  11. D. V. Schur, S. Yu. Zaginaichenko, A. D. Zolotarenko, and T. N. Veziroglu, Carbon Nanomaterials in Clean Energy Hydrogen Systems, (Dordrecht: Springer: 2008), p. 85.
  12. O. D. Zolotarenko, O. P. Rudakova, M. T. Kartel, H. O. Kaleniuk, A. D. Zolotarenko, D. V. Schur, and Y. O. Tarasenko, Surface, 12, No. 27: 263 (2020) (in Ukrainian).
  13. N. E. Ahanova, D. V. Schur, N. A. Gavriluk, M. T. Gabdullin, N. S. Anikina, An. D. Zolotarenko, O. Ya. Krivushhenko, Al. D. Zolotarenko, B. M. Gorelov, E. Erlanuli, and D. G. Batrishev, Chemistry, Physics and Technology of Sur-face, 11, No. 3: 429 (2020) (in Ukrainian).
  14. Z. A. Matysina, Ol. D. Zolotarenko, O. P. Rudakova, N. Y. Akhanova, A. P. Pomytkin, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrylyuk, A. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Prog. Phys. Met., 23, No. 3: 510 (2022).
  15. N. Ye. Akhanova, D. V. Shchur, A. P. Pomytkin, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21: 2435 (2021). Crossref
  16. O. D. Zolotarenko, E. P. Rudakova, A. D. Zolotarenko, N. Y. Akhanova, M. N. Ualkhanova, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, Yu. O. Tarasenko, and O. O. Havryliuk, Chemistry, Physics and Technology of Surface, 13, No. 3: 259 (2022) (in Ukrainian).
  17. D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, O. P. Zolotarenko, M. V. Chimbai, N. Y. Akhanova, M. Sultangazina, and E. P. Zolotarenko, Phys. Sci. Tech., 6, No. 1–2: 46 (2019). Crossref
  18. M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, and S. Zaginaichenko, Diamond Relat. Mater., 32: 72 (2013). Crossref
  19. A. D. Zolotarenko, A. D. Zolotarenko, V. A. Lavrenko, S. Y. Zaginaichenko, N. A. Shvachko, O. V. Milto, and Y. A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II: 127 (2011). Crossref
  20. N. Akhanova, S. Orazbayev, M. Ualkhanova, A. Y. Perekos, A. G. Dubovoy, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. T. Gabdullin, and T. S. Ramazanov, J. Nanosci. Nanotech. Applications, 3, No. 3: 1 (2019).
  21. Ol. D. Zolotarenko, O. P. Rudakova, N. E. Ahanova, An. D. Zolotarenko, D. V. Schur, M. T. Gabdullin, M. Ualhanova, N. A. Gavriluk, M. V. Chimbaj, Yu. O. Tarasenko, I. V. Zagorulko, and O. D. Zolotarenko, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417 (2021) (in Ukrainian).
  22. Ol. D. Zolotarenko, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, M. Sultangazina, N. A. Gavrylyuk, M. V. Chymbai, A. D. Zolotarenko, I. V. Zagorulko, and Yu. O. Tarasenko, Metallofiz. Noveishie Tekhnol., 44, No. 3: 343 (2022) (in Ukrainian).
  23. D. V. Schur, S. Y. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, and N. S. Anikina, Int. J. Hydrogen Energy, 36, No. 1: 1143 (2011). Crossref
  24. A. F. Savenko, V. A. Bogolepov, K. A. Meleshevich, S. Yu. Zaginaichenko, D. V. Schur, M. V. Lototsky, V. K. Pishuk, L. O. Teslenko, and V. V. Skorokhod, Hydrogen Materials Science and Chemistry of Carbon Nano-materials: 365 (2007).
  25. D. V. Schur, S. Zaginaichenko, and T. N. Veziroglu, Int. J. Hydrogen Energy, 33, Iss. 13: 3330 (2008). Crossref
  26. D. V. Schur, M. T. Gabdullin, S. Yu. Zaginaichenko, T. N. Veziroglu, M. V. Lototsky, V. A. Bogolepov, and A. F. Savenko, Int. J. Hydrogen Energy, 41, Iss. 1: 401(2016). Crossref
  27. D. V. Schur, S. Yu. Zaginaichenko, and T. N. Veziroglu, Int. J. Hydrogen Ener-gy, 40, Iss. 6: 2742 (2015). Crossref
  28. Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Shchur, A. Viziroglu, T. N. Viziroglu, M. T. Gabdullin, N. F. Javadov, An. D. Zolotarenko and Al. D. Zolotarenko, Gidrogen v Kristallah [Hydrogen in Crystals] (Kyiv: Pub-lishing House ‘KIM’: 2017) (in Russian).
  29. D. V. Schur, S. Yu. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, N. S. Anikina, A. D. Zolotarenko, Z. A. Matysina, T. N. Veziroglu and N. E. Skryabina, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II: 87 (2011). Crossref
  30. Z. A. Matysina, An. D. Zolonarenko, Al. D. Zolonarenko, N. A. Gavrylyuk, A. Veziroglu, T. N. Veziroglu, A. P. Pomytkin, D. V. Schur, and M. T. Gabdullin, Features of the Interaction of Hydrogen with Metals, Alloys and Compounds. Hydrogen Atoms in Crystalline Solids (Kyiv: ‘KIM’ Publishing House: 2022).
  31. D. V. Schur, M. T. Gabdullin, V. A. Bogolepov, A. Veziroglu, S. Yu. Zaginaichenko, A. F. Savenko, and K. A. Meleshevich, Int. J. Hydrogen Energy, 41, Iss. 3: 1811 (2016). Crossref
  32. Z. A. Matysina and D. V. Shchur, Russ. Phys. J., 44: 1237 (2001). Crossref
  33. V. I. Trefilov, D. V. Schur, V. K. Pishuk, S. Yu. Zaginaichenko, A. V. Choba, and N. R. Nagornaya, Renewable Energy, 16, Iss. 1–4: 757 (1999). Crossref
  34. A. D. Zolotarenko, A. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, N. A. Gavrylyuk, D. V. Schur, T. S. Ramazanov, and M. T. Gabdullin, Int. J. Hydrogen Energy, 47, Iss. 11: 7281 (2022). Crossref
  35. Ol. D. Zolotarenko, O. P. Rudakova, An. D. Zolotarenko, D. V. Shchur, N. A. Gavrilyuk, N. T. Kartel, O. D. Zolotarenko, and V. A. Mashira, Recent Contributions to Physics, 81, No. 2: 68 (2022) (in Russian). Crossref
  36. Z. A. Matysina, O. S. Pogorelova, S. Yu. Zaginaichenko, and D. V. Schur, J. Phys. Chem. Solids, 56, No. 1: 9 (1995). Crossref
  37. Z. A. Matysina, S. Yu. Zaginaichenko, and D. V. Schur, Int. J. Hydrogen Ener-gy, 21, Is. 11–12: 1085 (1996). Crossref
  38. D. V. Schur, S. Yu. Zaginaichenko, Z. A. Matysina, I. Smityukh, and V. K. Pishuk, J. Alloys Comd., 330–332: 70 (2002). Crossref
  39. Yu. M. Lytvynenko and D. V. Schur, Renewable Energy, 16, No. 1: 753 (1999). Crossref
  40. D. V. Schur, A. A. Lyashenko, V. M. Adejev, V. B. Voitovich, and S. Yu. Zaginaichenko, Int. J. Hydrogen Energy, 20, Iss. 5: 405 (1995).
  41. D. V. Schur, V. A. Lavrenko, V. M. Adejev, and I. E. Kirjakova, Int. J. Hydro-gen Energy, 19, Iss. 3: 265 (1994). Crossref
  42. Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Shchur, and M. T. Gabdullin, Russ. Phys. J., 59, No. 2: 177 (2016). Crossref
  43. S. Yu. Zaginaichenko, Z. A. Matysina, D. V. Schur, L. O. Teslenko, and A. Veziroglu, Int. J. Hydrogen Energy, 36, Iss. 1: 1152 (2011). Crossref
  44. S. Yu. Zaginaichenko, D. A. Zaritskii, D. V. Schur, Z. A. Matysina, T. N. Veziroglu, M. V. Chymbai, and L. I. Kopylova, Int. J. Hydrogen Energy, 40, Iss. 24: 7644 (2015). Crossref
  45. Z. A. Matysina, S. Yu. Zaginaichenko, and D. V. Shchur, Fiz. Met. Metalloved., 114, No. 4: 308 (2013). Crossref
  46. Z. A. Matysina, N. A. Gavrylyuk, M. T. Kartel, A. Veziroglu, T. N. Veziroglu, A. P. Pomytkin, D. V. Schur, T. S. Ramazanov, M. T. Gabdullin, An. D. Zolotarenko, Al. D. Zolotarenko, and N. A. Shvachko, Int. J. Hydrogen Energy, 46, Iss. 50: 25520 (2021). Crossref
  47. D. V. Shchur, S. Yu. Zaginaichenko, A. Veziroglu, T. N. Veziroglu, N. A. Gavrylyuk, A. D. Zolotarenko, M. T. Gabdullin, T. S. Ramazanov, Al. D. Zolotarenko, and An. D. Zolotarenko, Russ. Phys. J., 64: 89 (2021). Crossref
  48. S. Yu. Zaginaichenko, Z. A. Matysina, D. V. Schur, and A. D. Zolotarenko, Int. J. Hydrogen Energy, 37, Iss. 9: 7565 (2012). Crossref
  49. S. A. Tikhotskii, I. V. Fokin, and D. V. Schur, Izvestiya, Physics of the Solid Earth, 47, No. 4: 327 (2011). Crossref
  50. A. D. Zolotarenko, A. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, D. V. Schur, N. A. Gavrylyuk, T. S. Ramazanov, N. Y. Akhanova, and M. T. Gabdullin, Int. J. Hydrogen En-ergy, 47, Iss. 11: 7310 (2022). Crossref
  51. Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Schur, T. N. Veziroglu, A. Veziroglu, M. T. Gabdullin, Al. D. Zolotarenko, and An. D. Zolotarenko, Int. J. Hydrogen Energy, 43, Iss. 33: 16092 (2018). Crossref
  52. Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, M. T. Gabdulin, L. I. Kopylova, and T. I. Shaposhnikova, Russ. Phys. J., 61: 2244 (2019). Crossref
  53. D. V. Schur, A. Veziroglu, S. Yu. Zaginaychenko, Z. A. Matysina, T. N. Veziroglu, M. T. Gabdullin, T. S. Ramazanov, A. D. Zolonarenko, and A. D. Zolonarenko, Int. J. Hydrogen Energy, 44, Iss. 45: 24810 (2019). Crossref
  54. Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, and M. T. Gabdullin, Russ. Phys. J., 61: 253 (2018). Crossref
  55. An. D. Zolotarenko, Al. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, N. A. Gavrylyuk, D. V. Schur, T. S. Ramazanov, and M. T. Gabdullin, Int. J. Hydrogen Energy, 44, Iss. 11: 7281 (2021). Crossref
  56. S. E. Porozova, L. D. Sirotenko, V. O. Shokov, and A. A. Gurov, Refract. Ind. Ceram., 57: 321 (2016). Crossref
  57. K. Ando, B.-S. Kim, M.-C. Chu, S. Saitou, and S. Sato, Key Engineering Mate-rials, 247: 175 (2003). Crossref
  58. D. Mittal, J. Hostaša, L. Silvestroni, L. Esposito, A. Mohan, R. Kumar, and S. K. Sharma, J. European Ceramic Society, 42, Iss. 14: 6303 (2022). Crossref