High-Entropy Brazing Filler Metal Based on NiCoCrPdGe System for Brazing Nickel Superalloys

S. V. Maksymova, V. V. Voronov, P. V. Kovalchuk

E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 30.12.2022; final version - 12.01.2023. Download: PDF

When brazing of heat-resistant nickel alloys (HSN) with traditional industrial brazing filler metals of the Ni−Cr−(B, Si) systems, the formation of brittle intermetallic compounds, namely, silicides and borides, occurs in the brazed seams. In order to prevent the formation of such undesirable brittle phases in brazed joints of heat-resistant nickel alloys, investigation is conducted using high-entropy alloys as brazing filler metals. This work shows the possibility of creating multicomponent high-entropy brazing filler metals based on the NiCoCrPdGe system, using calculation methods, binary state diagrams of metal systems and taking into account the classic Hume-Rothery solid-solution formation criteria. A number of thermodynamic parameters ($\Delta S_{m}$, $\Delta H_{m}$, $\delta$, $\Omega_m$, $VEC_{m}$) and the liquidus temperature are determined by calculation, and their corresponding dependences on the content of alloying components in the alloys of the NiCoCrPdGe system are constructed. The limiting range of alloying of experimental alloys is established, within which the values of these thermodynamic quantities correspond to the parameters applied to high-entropy alloys and contribute to the formation of a solid-solution structure with an f.c.c. lattice. Based on the obtained data, a section of the liquidus surface for the alloys of the NiCoCrPdGe system is plotted. According to the results of the conducted investigation, the limiting concentration limits of the depressant, namely, germanium, which ensure an acceptable melting temperature of the brazing filler metals when brazing heat-resistant nickel alloys, are determined. According to the results of experimental studies, it is established that the alloy of the NiCoCrPdGe$_{5}$ system is characterized by a two-phase dendritic structure. As determined by means of the calculation method, the volume fraction of the solid solution is of 72.54−75.47%.

Key words: high-entropy alloy, filler metal, brazing, liquidus temperature, entropy of mixing, enthalpy of mixing, germanium.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i03/0387.html

DOI: https://doi.org/10.15407/mfint.45.03.0387

PACS: 05.70.-a, 05.70.Ce, 06.60.Vz, 61.66.Dk, 64.75.Nx, 82.33.Pt

Citation: S. V. Maksymova, V. V. Voronov, and P. V. Kovalchuk, High-Entropy Brazing Filler Metal Based on NiCoCrPdGe System for Brazing Nickel Superalloys, Metallofiz. Noveishie Tekhnol., 45, No. 3: 387—401 (2023) (in Ukrainian)


REFERENCES
  1. B. Geddes and H. Leon, Superalloys. Alloying and Performance (ASM International: 2010). Crossref
  2. S. B. Belikov and A. D. Koval, Metaloznavstvo ta obrobka metaliv, 2: 20 (1995) (in Ukrainian).
  3. Ch. T. Sims, Supersplavy II: Zharoprochnyye Materialy dlya Aerokosmicheskikh i Promyshlennykh Energoustanovok [Superalloys II: High Temperature Materials for Aerospace and Industrial Power Applications] (Moskva: Metallurgiya: 1995) (Russian translation).
  4. O. A. Ojo, N. L. Richards, and M. C. Chaturvedi, J. Scr. Mater., 50, No. 10: 641 (2004). Crossref
  5. A. Ghasemi and M. Pouranvari, Sci. and Technol. of Welding and Joining, 24, No. 4: 342 (2019). Crossref
  6. L. Hardwick, P. Rodgers, E. Pickering, and R. Goodall, Metall. Mater. Trans. A, 52: 2534 (2021). Crossref
  7. D. Kay, Industrial Heating, 70, No. 11: 33 (2003).
  8. A. Rabinkin, Sci. and Technol. of Welding and Joining, 9, No. 3: 181 (2004). Crossref
  9. V. V. Kurenkova, L. K. Doroshenko, and I. S. Malashenko, Paton Welding J., 6: 14 (2009).
  10. X. Huang, Weld. J., 93, No. 7: 232 (2014). Crossref
  11. V. F. Khorunov, S. V. Maksymova, and V. G. Ivanchenko, Paton Welding J., 9: 26 (2004).
  12. H. V. Yermolayev, V. V. Kvasnyts'kyy, V. F. Kvasnyts'kyy, S. V. Maksymova, V. F. Khorunov, and V. V. Chyhar'ov, Payannya Materialiv (Mykolayiv: NUK: 2015) (in Ukrainian).
  13. S. Maksymova, V. Voronov, and P. Kovalchuk, Metallofiz. Noveishie Tekhnol., 41 No. 11: 1539 (2019) (in Russian).
  14. M. Salmaliyan and M. Shamanian, Heat Mass Transf., 55, No. 8: 2083 (2019). Crossref
  15. X. J. Yuan, M. B. Kim, and C. Y. Kang, Mater. Sci. Technol., 27 No. 7: 1191 (2011). Crossref
  16. M. Abdelfatah and O. A. Ojo, Mater. Sci. Technol., 25 No. 1: 61 (2009). Crossref
  17. D. Luo, Y. Xiao, L. Hardwick, R. Snell, M. Way, X. Sanuy Morell, F. Livera, N. Ludford, C. Panwisawas, H. Dong, and R. Goodall, Entropy, 23, No. 1: 78 (2021). Crossref
  18. W. Tillmann, T. Ulitzka, L. Wojarski, M. Manka, and D. Wagstyl, Weld. World, 64, No. 1: 201 (2020). Crossref
  19. W. Tillmann, T. Wojarski, D. Stangier, M. Manka, and C. Timmer, Weld. World, 64, No. 9: 1597 (2020). Crossref
  20. D. Bridges, S. Zhang, S. Lang, M. Gao, Z. Yu, Z. Feng, and A. Hu, Mater. Lett., 215, No. 12: 11 (2018). Crossref
  21. J. Yeh, Annales De Chimie - Science des Materiaux, No. 31: 633 (2006). Crossref
  22. W. Tang and J. Yeh, Metall. Mater. Trans. A. 40, No. 6: 1479 (2009). Crossref
  23. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, Prog. Mater. Sci., 61, No. 4: 1 (2014). Crossref
  24. A. Li and X. Zhang, Acta Metall. Sin. (Engl. Lett.), 22, No. 3: 219 (2009).
  25. A. E. Shapiro, Proc. Int. Conf. Brazing and Soldering (Oct. 3-6, 2021, Miami).
  26. T. B. Massalski, Binary Alloy Phase Diagrams (Metals Park, Ohio: ASM International: 1990) (in CD).
  27. B. Vishwanadh, N. Sarkar, S. Gangil, S. Singh, R. Tewari, G. K. Dey,   and S. Banerjee, Scr. Mater., 124, No. 11: 146 (2016). Crossref
  28. X. Sun, H. Zhang, S. Lu, X. Ding, Y. Wang, and L. Vitos, Acta Mater., 140, No. 5: 366 (2017). Crossref
  29. Y. Zhang, Z. P. Lu, S. G. Ma, P. K. Liaw, Z. Tang, Y. Q. Cheng, and M. C. Gao,   MRS Commun., 4, No. 2: 57 (2014). Crossref
  30. M. C. Gao, J. W. Yeh, P. K. Liaw, and Y. Zhang, High-Entropy Alloys, (Switzerland: Springer Int. Publ.: 2016).
  31. X. S. Morell, R. Goodall, E. Pickering, P. Webb, P. Rodgers, E. S. De Cambra, and L. T.Marguez, Proc. Int. Conf. Brazing and Soldering (Oct. 3-6, 2021, Miami).
  32. V. G. Ivanchenko, S. P. Oshkad'orov., and S. M. Severina, Metalozn. Obrobka Met., 1: 21 (2014).
  33. L. N. Myshenina and V. V. Shelkovnikov, Spravochnyye Materialy po Khimii (Tomsk: 2007).
  34. Periodic Table with Element Names and Electronegativity; http://surl.li/dkhxg
  35. Guide-Scientific.com. Educational Portal; https://guide-scientific.com/
  36. Interactive Periodic Table of Elements; https://periodictable.me/palladium-electron-configuration/
  37. A. Takeuchi and A. Inoue, Mater. Trans., 46, No. 12: 2817 (2005). Crossref
  38. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater., 6, No. 5: 299 (2004). Crossref
  39. A. K. Singh, K. Kumar, A. Dwivedi, and A. Subramaniam, Intermetallics, 53, No. 10: 112 (2014). Crossref
  40. X. Yang, Y. Zhang, and P. K. Liaw, Procedia Eng., 36, No. 3: 292 (2012). Crossref
  41. S. Guo and C. Liu, Prog. Nat. Sci.: Mater. Int., 21, No. 6: 433 (2011).
  42. L. Jiang, Y. P. Lu, H. Jiang, T. M. Wang, B. N. Wei, Z. Q. Cao, and T. J. Li, Materi. Sci. Technol., 32, No. 6: 588 (2016).
  43. S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys., 109, 103505 (2011). Crossref