Magnetic Properties of Fe$_2$CrGa Heusler Alloy Films

Yu. V. Kudryavtsev$^{1}$, V. O. Golub$^{2}$, A. O. Perekos$^{1}$, T. G. Kabantsev$^{2}$, M. P. Melnyk$^{1}$, V. Yu. Tarenkov$^{3}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Institute of Magnetism under NAS and MES of Ukraine, 36b Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$Donetsk Institute for Physics and Engineering Named after O. O. Galkin, NAS of Ukraine, 72 R. Luxembourg Str., 83114 Donetsk, Ukraine

Received: 11.04.2023; final version - 13.04.2023. Download: PDF

Static and dynamical magnetic properties of the amorphous and crystalline $A$2-type ordered Heusler Fe$_2$CrGa-alloy films are investigated and compared with the properties of the bulk $A$2-type ordered Fe$_2$CrGa alloy. Unlike literature results for bulk Fe$_2$CrGa alloy, a complete structural disorder in amorphous state gives rise to a drastic decrease of alloy saturation magnetization. Annealing of amorphous films at $T_{\textrm{ann}}$ = 740 K leads to their crystallization with the formation of the disordered $A$2-type structure and the magnetic properties of such crystalline films close to those of bulk alloy. Ferromagnetic resonance (FMR) investigations show that both amorphous and crystalline Fe$_2$CrGa-alloy films are microscopically inhomogeneous in both magnetic and structural aspects. Based on the FMR spectra analysis, it can be concluded that, in crystalline Fe$_2$CrGa-alloy films, there are regions with order close to the crystallographic $L$2$_1$ and Hg$_2$CuTi types. These results perfectly correlate with first-principal calculations of the magnetic properties of Fe$_2$CrGa alloy. As shown, the Slater–Pauling rule is not applicable for full Heusler alloys with inverse crystalline Hg$_2$CuTi-type structure.

Key words: thin magnetic films, amorphous state, atomic ordering, ferromagnetic resonance, Heusler alloys.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i04/0431.html

DOI: https://doi.org/10.15407/mfint.45.04.0431

PACS: 61.43.Dq, 68.55.-a, 75.70.Ak, 76.50.+g, 81.15.Ef

Citation: Yu. V. Kudryavtsev, V. O. Golub, A. O. Perekos, T. G. Kabantsev, M. P. Melnyk, and V. Yu. Tarenkov, Magnetic Properties of Fe$_2$CrGa Heusler Alloy Films, Metallofiz. Noveishie Tekhnol., 45, No. 4: 431—441 (2023)


REFERENCES
  1. F. Heusler, Verh. Dtsch. Phys. Ges., 12: 219 (1903).
  2. L. Krusin-Elbaum, A. P. Malozemoff, and R. C. Taylor, Phys. Rev., 27: 562 (1983). Crossref
  3. K. L. Dang, P. Veillet, and I. A. Campbell, J. Phys. F: Met. Phys., 7: L237 (1977). Crossref
  4. R. C. Taylor and C. C. Tsuei, Solid State Communications, 41, Iss. 6: 503 (1982). Crossref
  5. J. Q. Xie, J. Lu, J. W. Dong, X. Y. Dong, T. C. Shih, S. McKernan, and C. J. Palmstrøm, J. Appl. Phys., 97: 073901 (2005).
  6. S. J. Lee, Y. P. Lee, Y. H. Hyun, and Y. V. Kudryavtsev, J. Appl. Phys., 93: 9675 (2003).
  7. A. Vovk, S. A. Bunyaev, P. Štrichovanec, N. R. Vovk, B. Postolnyi, A. Apolinario, J. Á. Pardo, P. A. Algarabel, G. N. Kakazei, and J. P. Araujo, Nanomaterials, 11: 1229 (2021). Crossref
  8. M. Kogachi, T. Fujiwara, and S. Kikuchi, J. Alloys Comp., 475: 723 (2009). Crossref
  9. A. W. Karbonari, R. N. Saxena, J. Mestnik-Filho, G. A. Cabrera-Pasca, M. N. Rao, J. R. B. Oliveira, and M. A. Rizzuto, J. Appl. Phys., 99: 08J104 (2006). Crossref
  10. K. Seema, N. M. Umran, and Ranjan Kumar, J. Supercond. Nov. Magn., 29: 401 (2016). Crossref
  11. S. Ishida, S. Mizutani, S. Fujii, and S. Asano, Mater. Trans., 47, Iss. 3: 464 (2006). Crossref
  12. J. Kiss, S. Chadov, G. H. Fecher, and C. Felser, arXiv:1302.0713v1 (2013).
  13. M. G. Kostenko and A. V. Lukoyanov, Mater. Chem. Phys., 239: 122100 (2020). Crossref
  14. K. Ozdogan, B. Aktas, I. Galanakis, and E. Sasioglu, arXiv:cond-mat/0607652 (2006).
  15. H. G. Zhang, C. Z. Zhang, W. Zhu, E. K. Liu, W. H. Wang, H. W. Zhang, J. L. Cheng, H. Z. Luo, and G. H. Wu, J. Appl. Phys., 114: 013903 (2013). Crossref
  16. M. Farle, Rep. Prog. Phys., 61: 755 (1998). Crossref
  17. K. H. J. Buschow, P. G. van Engen, and R. Jongebreur, J. Magn. Magn. Mater., 38, Iss. 1: 1 (1983). Crossref
  18. R. Y. Umetsu, N. Morimoto, M. Nagasako, R. Kainuma, and T. Kanomata, J. Alloys Comp., 528: 34 (2012). Crossref
  19. Y. V. Kudryavtsev, N. V. Uvarov, V. V. Klimov, and L. E. Kozlova, J. Appl. Phys., 132, Iss. 10: 105103 (2022). Crossref
  20. I. Galanakis, K. Özdoğan, and E. Şaşioğlu, AIP Advances, 6: 055606 (2016). Crossref
  21. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B, 66: 174429 (2002). Crossref
  22. T. Graf, C. Felser, and S. S. P. Parkin, Prog. Solid State Chem., 39: 1 (2011). Crossref
  23. G. H. Fecher, H. C. Kandpal, S. Wurmehl, and Claudia Felser, arXiv:cond-mat/0510210v1 (2005).
  24. S. Skaftouros, K. Özdoğan, E. Şaşioğlu, and I. Galanakis, Phys. Rev. B, 87: 024420 (2013). Crossref