Effect of Atomic Substitutions on the Electronic Structure of Pt$_{1-x}$$Me$$_{x}$MnSb ($Me$ = Ni, Cu; $x$ = 0.0–1.0)

V. M. Uvarov, M. V. Uvarov, M. V. Nemoshkalenko

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 10.02.2023; final version - 28.02.2023. Download: PDF

Using band calculations within the FLAPS (full-potential linearized augmented-plane waves) model, information is obtained about the energy, charge, and spin characteristics of Pt$_{1-x}Me_{x}$MnSb alloys ($Me$ = Ni, Cu; $x$ = 0.0–1.0). As established, with an increase in the concentration of the nickel or copper atoms, the interatomic spatial density of electrons decreases, covalent bonds are weakened, and the binding energies of atoms in alloys decrease. As found, the dominant contributions to the formation of magnetic moments are made by 3$d$ electrons of manganese atoms, and the polarization of electrons at Fermi levels is dependent on the composition of alloys.

Key words: band-structure calculations, Heusler alloys, band structure, magnetic moments, polarized band structure states, spintronics.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i04/0443.html

DOI: https://doi.org/10.15407/mfint.45.04.0443

PACS: 62.20.-x, 63.20.dk, 71.15.-m, 71.15.Mb, 71.20.Nr, 71.27.+a

Citation: V. M. Uvarov, M. V. Uvarov, and M. V. Nemoshkalenko, Effect of Atomic Substitutions on the Electronic Structure of Pt$_{1-x}$$Me$$_{x}$MnSb ($Me$ = Ni, Cu; $x$ = 0.0–1.0), Metallofiz. Noveishie Tekhnol., 45, No. 4: 443—456 (2023)


REFERENCES
  1. G. E. Bacon and J. S. Plant, J. Phys. F: Metal Phys., 1: 524 (1971). Crossref
  2. T. Graf, C. Felser, and Stuart S. P. Parkin, Progress in Solid State Chemistry, 39: 1 (2011). Crossref
  3. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, arXiv: cond-mat/0203534v3, 19 Jul 2002, p. 1.
  4. C. Felser, G. H. Fecher, and B. Balke, Angew. Chem. Int. Ed., 46: 668 (2007). Crossref
  5. I. Galanakis and P. H. Dederichs, Lect. Notes Phys., 676: 1 (2005). Crossref
  6. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys.Rev.Lett., 50, No. 25: 2024 (1983). Crossref
  7. I. Galanakis, Ph. Mavropoulos, and P. H. Dederichs, arXiv: cond-mat/0510276v1, 11 Oct 2005, p.1.
  8. I. Galanakis and Ph. Mavropoulos, J. Phys.: Condens. Matter, 19: 1 (2007). Crossref
  9. P. G. van Engen, K. H. J. Buschow, R. Jongebreur and M. Erman, Appl. Phys. Lett., 42: 202 (1983). Crossref
  10. M. J. Otto, R. A. M. van Woerden, P. J. van der Valk, and J. Wijngaard, J. Phys.: Condens. Matter, 1: 2341 (1989). Crossref
  11. K. Endo, J. Phys. Soc. Japan, 29, No. 3, 643 (1970). Crossref
  12. Madhumita Halder, S. M. Yusuf, Amit Kumar, A. K. Nigam, and L. Keller, Phys. Rev. B, 74, 024428 (2006). Crossref
  13. T. Jeong, Ruben Weht, and W. E. Pickett, Phys. Rev. B, 71, 184103 (2005). Crossref
  14. J. Kudrnovský, V. Drchal, I. Turek, and P. Weinberger, Phys. Rev. B, 78: 054441 (2008). Crossref
  15. I. Galanakis, E. Şaşıoğlu, and K. Özdoğan, Phys. Rev. B, 77: 214417 (2008). Crossref
  16. P. P. J. van Engelen, D. B. de Mooij, J. H. Wijngaard, and K. H. J. Buschow, J. Magn. Magn. Mater., 130: 247 (1994). Crossref
  17. H. Masumoto and K. Watanabe, Trans. JIM, 17: 588 (1976). Crossref
  18. V. N. Uvarov, N. V. Uvarov, and S. A. Bespalov, Metallofiz. Noveishie Tekhnol., 38, No. 3: 305 (2016). Crossref
  19. V. N. Uvarov, N. V. Uvarov, S. A. Bespalov, and M. V. Nemoshkalenko, Ukr. J. Phys., 62, No. 2: 106 (2017). Crossref
  20. D. Singh, Plane Waves, Psedopotentials and LAPW Method (Kluwer Academic: 1994). Crossref
  21. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  22. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, and Laurence D. Marks, WIEN2k, An Augmented Plane Wave  Local Orbitals Program for Calculating Crystal Properties (Wien, Austria: Techn. Universität: 2001).
  23. http://www.wien2k.at/reg_user/faq/
  24. B. R. K. Nanda and I. Dasgupta, J. Phys.: Condens. Matter, 15: 7307(2003). Crossref
  25. V. N. Uvarov and N. V. Uvarov, Metallofiz. Noveishie Tekhnol., 39, No. 3: 309 (2017). Crossref
  26. J. Murrel, S. Kettle, and J. Tedder, Teoriya Valentnosti (Moskva: Mir: 1968) (Russian translation).
  27. B. L. Aleksandrov and M. B. Rodchenko, Patent RF RU2273058C1, 27.03.2006, Bull.9.
  28. V. N. Uvarov, N. V. Uvarov, and S. A. Bespalov, Metallofiz. Noveishie Tekhnol., 43, No. 6: 831 (2021). Crossref