Ultrasonic Investigation of High-Entropy Al$_{0.5}$CoCrCuFeNi Alloy at Low Temperature

V. S. Klochko, A. V. Korniyets, I. V. Kolodiy, O. O. Kondratov, V. I. Sokolenko, V. I. Spitsyna, T. M. Tykhonovska, N. A. Yayes

National Science Center ‘Kharkiv Institute of Physics and Technology’, NAS of Ukraine, 1 Akademichna Str., UA-61108 Kharkiv, Ukraine

Received: 09.02.2023; final version - 28.02.2023. Download: PDF

The temperature dependence of the velocity propagation and the change in the attenuation of plane-polarized ultrasonic waves at a frequency of 50 MHz in the high-entropy Al$_{0.5}$CoCrCuFeNi alloy is investigated, using the ultrasonic spectroscopy in the temperature range 77–300 K. As found, the acoustic-characteristics’ anisotropy of the alloy is due to the growth texture. Significant attenuation of ultrasonic waves is revealed. Its temperature dependence is analysed. The effect of annealing on the studied acoustic characteristics is investigated. The estimate of values of the dynamic Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio is made.

Key words: high-entropy alloy, ultrasonic studies, anisotropy, elastic modulus.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i04/0523.html

DOI: https://doi.org/10.15407/mfint.45.04.0523

PACS: 43.20.Hq, 43.35.Cg, 61.72.Ff, 62.20.de, 62.20.dj, 62.65.+k, 62.80.+f

Citation: V. S. Klochko, A. V. Korniyets, I. V. Kolodiy, O. O. Kondratov, V. I. Sokolenko, V. I. Spitsyna, T. M. Tykhonovska, and N. A. Yayes, Ultrasonic Investigation of High-Entropy Al$_{0.5}$CoCrCuFeNi Alloy at Low Temperature, Metallofiz. Noveishie Tekhnol., 45, No. 4: 523—535 (2023)


REFERENCES
  1. C. J. Tong, Y. L. Chen, J. W. Yeh, S. J. Lin, and S. K. Chen, Metall. Mater. Trans. A, 36: 881 (2005). Crossref
  2. L. H. Wen, H. C. Kou, J. S. Li, H. Chang, X. Y. Xue, and L. Zhou, Intermetallics, 17, Iss. 4: 266 (2009). Crossref
  3. Che-Wei Tsai, Ming-Hung Tsai, Jien-Wei Yeh, and Chih-Chao Yang, J. Alloys Compd., 490, Iss. 1-4: 160 (2010). Crossref
  4. S. Sing, N. Wanderka, B. S. Murty, U. Glatzel, and J. Banhart, Acta Mater., 59, Iss. 1: 182 (2011). Crossref
  5. Chun Ng, Sheng Guo, Junhua Luan, Sanqiang Shi, and C. T. Liu, Intermetallics, 31: 165 (2012). Crossref
  6. X.-W. Qiu, J. Alloys Compd., 555: 246 (2013). Crossref
  7. M. Tsai and J. Yeh, Mater. Res. Lett., 2, No 3: 107 (2014). Crossref
  8. M. V. Ivchenko, V. G. Pushin, and N. Wanderka, Zhurnal Tekhnicheskoi Fiziki, 84, No. 2: 57 (2014) (in Russian).
  9. Yu. A. Semerenko, E. D. Tabachnikova, T. M. Tikhonovskaya, I. V. Kolodiy, A. S. Tortika, S. G. Shumilin, and M. A. Laktionova, Metallofiz. Noveishie Tekhnol., 37, No. 11: 1527 (2015) (in Ukrainian).
  10. E. D. Tabachnikova, M. A. Laktionova, Yu. A. Semerenko, S. G. Shumilin, and A. V. Podolsky, M. A. Tikhonovsky, J. Miskuf, and K. Csach, Low Temp. Phys., 43, No. 9: 1108 (2017). Crossref
  11. Yu. A. Semerenko and V. D. Natsik, Low Temp. Phys., 46, No. 1: 92 (2020). Crossref
  12. V. M. Nadutov, O. I. Zaporozhets, N. A. Dordienko, V. A. Mikhaylovsky, S. Yu. Makarenko, and A. V. Proshak, Fizika i Tekhnika Vysokikh Davleniy, 26, Nos. 3-4: 31 (2016) (in Ukrainian).
  13. V. N. Voyevodin, V. A. Frolov, E. V. Karaseva, A. V. Mats, V. I. Sokolenko, T. M. Tikhonovskaya, and A. S. Tortika, Functional Materials, 46, No. 4: 683 (2021) (in Ukrainian).
  14. Yu. I. Sirotin and M. P. Shaskolskaya, Osnovy Kristallografii [Fundamentals of Crystallography] (Moskva: Nauka: 1975) (in Russian).
  15. Ultrazvukovyye Metody Issledovaniya Dislokatsiy: Sb. Statei [Ultrasonic Methods for Studying Dislocations] (Ed. L. G. Merkulov) (Moskva: Izd. Inostr. Lit.: 1963), p. 321 (Russian translation).
  16. W. J. Wang, Progress in Materials Science, 57, No. 3: 487 (2012). Crossref
  17. V. S. Postnikov, Vnutrenneye Trenie v Metallakh [Internal Friction in Metals] (Moskva: Metallurgiya: 1974), p. 301 (Russian).
  18. H. Y. Kim, I. Ikehara, L. I. Kim, H. Hosoda, and S. Miyazaki, Acta Matter., 54, No. 9: 2419 (2006). Crossref