The Surfaces Properties of Steel Parts with Wear-Resistant Coatings of the 1M and 90% BK6 + 10% 1M Composition Applied by the Method of Electrospark Alloying with the Use of Special Technological Environments. Pt. 1. The Strengthened-Surfaces’ Structural State Features

V. B. Tarelnyk$^{1}$, O. P. Gaponova$^{2}$, V. I. Melnyk$^{3}$, N. V. Tarelnyk$^{1}$, V. M. Zubko$^{1}$, V. M. Vlasovets$^{4}$, Ie. V. Konoplianchenko$^{1}$, S. G. Bondarev$^{1}$, O. V. Radionov$^{1}$, M. M. Mayfat$^{1}$, V. O. Okhrimenko$^{2}$, A. V. Tkachenko$^{1}$

$^{1}$Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine
$^{2}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine
$^{3}$State Biotechnological University, 44 Alchevskikh Str., UA-61002 Kharkiv, Ukraine
$^{4}$Lviv National Environmental University, 1 Volodymyra Velykoho Str., UA-30831 Dublyany, Ukraine

Received: 07.04.2023; final version - 13.04.2023. Download: PDF

The article describes a new method of forming the protective coatings of steel parts operating under conditions of abrasive wear both in general mechanical engineering, the composition of which is of 90% ВК6 + 10% 1М, and in industries, where there may be radiation exposure and the composition of 1М (70% Ni, 20% Cr, 5% Si, 5% B), by applying them by the method of electrospark alloying (ESA) with compact electrodes-tools made of nichrome wire X20Н80 and ВК6 hard alloy and using special technological media (STM), which include the necessary alloying elements. As a result of these research, it is established that the surface layers of the 45 and Р6M5 steels after applying wear-resistant coatings have a structure that consists of three areas: the ‘white layer’, the transition zone below, and the base metal. When the discharge energy ($Wp$) increases from 0.52 to 2.6 J, the thicknesses of the ‘white layer’ and the transition zone, their microhardness and surface roughness increase, but the integrity of the applied coating decreases. The highest microhardness of 9750-12800 and 14250-14600 MPa corresponds to the coating formed on steel 45 and Р6M5, respectively, during ESA by means of both the compact electrodes-tools made of hard alloy ВК6 and the STM with the composition of 0.5% Si + 0.5% B + 2% Cr + 7% Ni + 90% Vaseline.

Key words: electrospark alloying, electrode tool, coating, ‘white layer’, microhardness, roughness, continuity.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i05/0663.html

DOI: https://doi.org/10.15407/mfint.45.05.0663

PACS: 61.72.Ff, 62.20.Qp, 68.35.Ct, 68.35.Gy, 68.55.J-, 81.15.Rs, 81.40.Pq

Citation: V. B. Tarelnyk, O. P. Gaponova, V. I. Melnyk, N. V. Tarelnyk, V. M. Zubko, V. M. Vlasovets, Ie. V. Konoplianchenko, S. G. Bondarev, O. V. Radionov, M. M. Mayfat, V. O. Okhrimenko, and A. V. Tkachenko, The Surfaces Properties of Steel Parts with Wear-Resistant Coatings of the 1M and 90% BK6 + 10% 1M Composition Applied by the Method of Electrospark Alloying with the Use of Special Technological Environments. Pt. 1. The Strengthened-Surfaces’ Structural State Features, Metallofiz. Noveishie Tekhnol., 45, No. 5: 663—686 (2023) (in Ukrainian)


REFERENCES
  1. I. Kuric, M. Kandera, J. Klarák, V. Ivanov, and D. Więcek, Advanced Manufacturing Processes (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, M. Edl, I. Kuric, I. Pavlenko, and P. Dasic) (Springer: 2020), p. 148. Crossref
  2. A. Zahorulko, C. Kundera, and S. Hudkov, IOP Conference Series: Materials Science and Engineering, 233: 012039 (2017). Crossref
  3. A. Zahorulko, Sealing Technology, 2015, Iss. 8: 7 (2015). Crossref
  4. A. Kotliar, Y. Basova, V. Ivanov, O. Murzabulatova, S. Vasyltsova, M. Litvynenko, and O. Zinchenko, Management and Production Engineering Review, 11, No. 1: 52 (2020).
  5. V. Ivanov, I. Dehtiarov, Y. Denysenko, N. Malovana, and N. Martynova, Diagnostyka, 19, No. 3: 3 (2018). Crossref
  6. V. Ivanov, I. Dehtiarov, I. Pavlenko, M. Kosov, and M. Hatala, Advances in Design, Simulation and Manufacturing II (Eds. V. Ivanov, J. Trojanowska, J. Machado, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Springer: 2019), p. 114. Crossref
  7. V. Ivanov, I. Pavlenko, I. Kuric, and M. Kosov, Industry 4.0: Trends in Management of Intelligent Manufacturing Systems (Eds. L. Knapčíková and M. Balog) (Springer: 2019), p. 133. Crossref
  8. S. Pylypaka, T. Zaharova, O. Zalevska, D. Kozlov, and O. Podliniaieva, Advanced Manufacturing Processes (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, M. Edl, I. Kuric, I. Pavlenko, and P. Dasic) (Springer: 2020), p. 582.
  9. S. Pylypaka, T. M. Volina, M. Mukvich, G. Efremova, and O. Kozlova, Advances in Design, Simulation and Manufacturing III (Eds. V. Ivanov, I. Pavlenko, O. Liaposhchenko, J. Machado, and M. Edl) (Springer: 2020), p. 63. Crossref
  10. S. Pylypaka, V. Nesvidomin, T. Volina, L. Sirykh, and L. Ivashyna, Inmateh Agricultural Engineering, 62, No. 3: 79 (2020). Crossref
  11. S. Pylypaka, T. Volina, I. Hryshchenko, I. Rybenko, and N. Sydorenko, Advanced Manufacturing Processes II (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, A. Grabchenko, I. Pavlenko, M. Edl, I. Kuric, and P. Dasic) (Springer: 2021), p. 196.
  12. T. Volina, S. Pylypaka, A. Rebrii, O. Pavlenko, and Y. Kremets, Advanced Manufacturing Processes II (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, A. Grabchenko, I. Pavlenko, M. Edl, I. Kuric, and P. Dasic) (Springer: 2021), p. 237.
  13. A. A. Parkin, S. S. Zhatkin, and A. B. Semin, Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk, 18, No. 4 (2): 362 (2016) (in Russian).
  14. A. Panasyuk, O. Umanskyi, M. Storozhenko, and V. Akopyan, Key Engineering Materials, 527: 9 (2013). Crossref
  15. O. Umanskyi, M. Storozhenko, M. Antonov, O. Terentjev, O. Koval, and D. Goljandin, Key Engineering Materials, 604: 16 (2019). Crossref
  16. N. Radek and K. Bartkowiak, Physics Procedia A, 5: 417 (2010). Crossref
  17. V. G. Smelov, A. V. Sotov, and S. A. Kosirev, ARPN J. Eng. Applied Sci., 9, No. 10: 1854 (2014).
  18. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings (Eds. A. D. Pogrebnjak and V. Novosad) (Springer: 2019), p. 249. Crossref
  19. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, N. V. Tarelnyk, V. S. Martsynkovskyy, B. O. Sarzhanov, O. A. Sarzhanov, and B. Antoszewski, Powder Metall. Met. Ceram., 58: 703 (2020). Crossref
  20. A. D. Pogrebnyak, A. M. Mahmud, I. T. Karasha, G. V. Kirik, R. Y. Tkachenko, and A. P. Sypylenko, J. Nano- Electron. Phys., 3, No. 4: 73 (2011).
  21. V. N. Radzievskiy, Yu. F. Gartsunov, and G. G. Tkachenko, Avtomaticheskaya svarka, No. 3: 48 (1997) (in Russian).
  22. Shu-Hung Yeh, Liu-Ho Chiu, and Heng Chang, Engineering, 3, No. 9: 942 (2011).
  23. S. Ben Slima, Materials Sciences and Applications, 3, Iss. 9: 640 (2012).
  24. C. M. Suh, J. K. Hwang, K. S. Son, and H. K. Jang, Mater. Sci. Eng. A, 392, Nos. 1-2: 31 (2005). Crossref
  25. J. Baranowska and S. E. Franklin, Wear, 264, Nos. 9-10: 899 (2008). Crossref
  26. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Engineering, 39: 148 (2012). Crossref
  27. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Engineering, 39: 157 (2012). Crossref
  28. V. B. Tarelnik, O. P. Gaponova, E. V. Konoplyantschenko, N. S. Yevtushenko, and V. A. Gerasimenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018) (in Russian). Crossref
  29. V. B. Tarelnyk, A. V. Paustovskii, Y. G. Tkachenko, E. V. Konoplianchenko, V. S. Martsynkovskyi, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 55: 585 (2017). Crossref
  30. V. B. Tarel'nik, A. V. Paustovskii, Y. G. Tkachenko, V. S. Martsinkovskii, E. V. Konoplyanchenko, and K. Antoshevskii, Surf. Eng. Applied Electrochemistry, 53: 258 (2017). Crossref
  31. V. B. Tarelnyk, O. P. Gaponova, V. B. Loboda, E. V. Konoplyanchenko, V. S. Martsinkovskii, Yu. I. Semirnenko, N. V. Tarelnyk, M. A. Mikulina, and B. A. Sarzhanov, Surf. Eng. Applied Electrochemistry, 57: 173 (2021). Crossref
  32. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 266 (2017). Crossref
  33. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 385 (2017). Crossref
  34. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplianchenko, V. S. Martsynkovskyy, N. V. Tarelnyk, and O. O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 1: 47 (2019). Crossref
  35. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, I. Konoplianchenko, A. Belous, V. Gerasimenko, and M. Zakharov, IOP Conference Series: Materials Science and Engineering, 233: 012048 (2017). Crossref
  36. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, I. Konoplianchenko, M. Dovzyk, N. Tarelnyk, and S. Gorovoy, IOP Conference Series: Materials Science and Engineering, 233: 012049 (2017). Crossref
  37. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings (Eds. A. D. Pogrebnjak and V. Novosad) (Springer: 2019), p. 249. Crossref
  38. N. V. Tarelnyk, Metallofiz. Noveishie Tekhnol., 44, No. 8: 1037 (2022) (in Ukrainian). Crossref
  39. O. P. Gaponova and N. V. Tarelnyk, Metallofiz. Noveishie Tekhnol., 44, No. 9: 1103 (2022) (in Ukrainian). Crossref
  40. V. B. Tarelnyk, O. P. Gaponova, Ie. V. Konoplianchenko, N. V. Tarelnyk, M. A. Mikulina, V. A. Gerasimenko, O. O. Vasylenko, V. M. Zubko, and V. I. Melnyk, Metallofiz. Noveishie Tekhnol., 44, No. 10: 1323 (2022) (in Ukrainian). Crossref
  41. Yu. F. Balandin, I. B. Gorynin, Yu. I. Zvezdin, and B. G. Mirkov, Konstruktsionnyye Materialy AES [Constructional Materials of NPP] (Moskva: Ehnergoatomizdat: 1984) (in Russian).
  42. E. Mayer, Tortsovyye Uplotneniya [Front Seals] (Moskva: Mashinostroyenie: 1978) (Russian translation).
  43. A. S. Shelegov, S. T. Leskin, and V. I. Slobodchuk, Fizicheskie Osobennosti i Konstruktsiya Reaktora VVER-1000 [Physical Features and Design of VVER1000 Reactor] (Moskva: NIYaU 'MIFI': 2011) (in Russian).
  44. E. M. Prokhorenko, V. Klepikov, V. V. Lytvynenko, A. Zakharchenko, and M. Khazhmuradov, Problems of Atomic Science and Technology, No. 2:193 (2015).
  45. V. V. Bryukhovetsky, V. F. Klepikov, V. V. Lytvynenko, D. E. Myla, V. P. Poyda, A. V. Poyda, V. T. Uvarov, Yu. F. Lonin, and A. G. Ponomarev, Nucl. Instrum. Methods Phys. Res. B, 499: 25 (2021). Crossref
  46. S. E. Donets, V. F. Klepikov, V. V. Lytvynenko, Yu. F. Lonin, A. G. Ponomarev, O. A. Startsev, and V. T. Uvarov, Problems of Atomic Scienceand Technology, No. 4: 302 (2015).
  47. V. F. Klepikov, V. V. Lytvynenko, Yu. F. Lonin, A. G. Ponomarev, O. G. Tolstolutskiy, V. V. Uvarov, and V. T. Uvarov, Problems of Atomic Science and Technology, No. 1: 119 (2009).
  48. A. G. Kobets, P. R. Horodek, O. A. Startsev, V. V. Lytvynenko, Yu. F. Lonin, A. G. Ponomarev, and V. T. Uvarov, Surf. Eng. Applied Electrochemistry, 51: 478 (2015). Crossref