Electrophysical Characteristics of $c$BN–NbN Composite Ceramics Doped with Al$_{2}$O$_{3}$, Si$_{3}$N$_{4}$, and SiC

Yu. Yu. Rumyantseva$^{1,2}$, L. O. Romanko$^{1}$, I. P. Fesenko$^{1}$, D. O. Savchenko$^{1}$, V. Z. Turkevych$^{1}$, S. Karcz$^{2}$

$^{1}$V. M. Bakul Institute for Superhard Materials, NAS of Ukraine, 2 Avtozavodska Str., UA-04074 Kyiv, Ukraine
$^{2}$Łukasiewicz - Krakow Institute of Technology, 73 Zakopińska Str, 30-011 Krakow, Poland

Received: 19.02.2023; final version - 13.04.2023. Download: PDF

Different additives’ influence on electric conductivity of ‘dielectric/conductor’-type composites (namely, polycrystalline $c$BN-based composites contained $c$BN as a dielectric phase and NbN as a conductor phase) is investigated. Investigated samples are obtained by the application of HPHT (high pressure-high temperature) sintering ($P$ = 7.7 GPa, $T$ = 2000°C). Electrical-resistance dependences on the temperature and applied voltage are measured for all samples. Obtained results’ analysis shows that all sintered samples have a semiconductor nature of conductivity. It is interesting that addition dielectrics (Al$_{2}$O$_{3}$, Si$_{3}$N$_{4}$) as well as semiconductor (SiC) leads to the electric-conductivity improve (drop in electrical resistance) for $c$BN–NbN composites in some degree (despite the lower electrical conductivity of these substances). Alumina whiskers’ addition to $c$BN–NbN composites leads to a more significant drop in electrical resistance compared to powder particles’ addition (from 1.85 to 0.72 Ohm$\cdot$cm for samples with whiskers (Al$_{2}$O$_{3}$w) and from 1.35 to 0.17 Ohm$\cdot$cm for samples with Al$_{2}$O$_{3}$ powder). Hence, as concluded, the sample electrical conductivity is affected by both the additive particles’ morphology and the grain boundaries’ state of the sintered polycrystalline ceramics.

Key words: dielectric, $c$BN, conductor, NbN, composite, additives, Al$_{2}$O$_{3}$, Si$_{3}$N$_{4}$, SiC, electrical resistance.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i06/0723.html

DOI: https://doi.org/10.15407/mfint.45.06.0723

PACS: 72.60.+g, 72.80.Ey, 72.80.Tm, 81.05.Je, 81.05.Mh, 81.40.Rs, 81.70.-q

Citation: Yu. Yu. Rumyantseva, L. O. Romanko, I. P. Fesenko, D. O. Savchenko, V. Z. Turkevych, and S. Karcz, Electrophysical Characteristics of $c$BN–NbN Composite Ceramics Doped with Al$_{2}$O$_{3}$, Si$_{3}$N$_{4}$, and SiC, Metallofiz. Noveishie Tekhnol., 45, No. 6: 723—732 (2023)


REFERENCES
  1. J. Feng, X. Li, J. Hu, and J. Cai, J. Electromagn. Eng. Sci. 2020, 20, No. 1: 1 (2020). Crossref
  2. E. D. Belotsky and P. M. Tomchuk, Surface Science, 239: 143 (1990). Crossref
  3. I. P. Fesenko, L. V. Viduta, V. I. Chasnyk, N. B. Nechytailo, D. V. Butenko, V. M. Tkach, V. Z. Turkevich, O. A. Marchenko, I. I. Zelenska, O. M. Kaidash, T. B. Serbenyuk, T. M. Belyaeva, E. F. Kuzmenko, and P. M. Tomchuk, J. Superhard Mater., 40, No. 6: 89 (2018). Crossref
  4. I. P. Fesenko, L. V. Viduta, D. V. Chasnyk, V. B. Nechytailo, I. A. Petrusha, O. M. Kaidash, Yu. Yu. Rumyantseva, V. V. Smokvyna, V. I. Chasnyk, V. V. Garashchenko, Yu. M. Tuz, V. P. Rukin, and N. O. Muliavko, J. Superhard Mater., 43: 303 (2021). Crossref
  5. I. P. Fesenko, L. O. Romanko, V. I. Chasnyk, L. M. Vovk, Yu. M. Tuz, A. V. Dovhal, T. B. Serbeniuk, O. M. Kaidash, O. O. Bochechka, and V. P. Rukin, J. Superhard Mater., 44, 70 (2022). Crossref
  6. Yu. Yu. Rumiantseva, L. O. Romanko, D. V. Chasnyk, V. Z. Turkevich, V. M. Bushlya, I. P. Fesenko, O. M. Kaidash, V. I. Chasnyk, and V. P. Rukin, J. Superhard Mater., 42, No. 2: 126 (2020). Crossref
  7. P. L. Rossiter, The Electrical Resistivity of Metals and Alloys. 2nd Ed. (Cambridge: University Press: 1991), vol. 6, pp. 113-141
  8. J. Lloyd-Hughes and T. I. Jeon, J. Infrared, Millimeter, and Terahertz Waves, 33, No. 9: 871 (2012). Crossref
  9. B. Delaet, J-C. Villegier, W. Escoffier, J-L. Thomassin, Ph. Feautrier, I. Wang, P. Renaud-Gou, and J-P. Poizat, J. Nuclear Instruments and Methods in Physics Research, 520, No. 1-3, 541 (2004). Crossref
  10. G. Goltsman, A. Korneev, V. Izbenko, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, A. Verevkin, J. Zhang, A. Pearlman, W. Slysz, and R. Sobolewski, J. Nuclear Instruments and Methods in Physics Research, 520, No. 1-3, 527 (2004). Crossref
  11. Y. Rumiantseva, I. Melnichuk, V. Garashchenko, O. Zaporozhets, V. Turkevich, and V. Bushlya, Ceram. Int., 46, No. 14: 22230 (2020). Crossref
  12. R. M. Fonseca, R. B. Soares, R. G. Carvalho, E. K. Tentardini, V. F. C. Lins, and M. M. R. Castro, J. Surface and Coatings Technology, 378, 124987 (2019). Crossref
  13. K. I. Sim, Y. C. Jo, T. Ha, J. H. Kim, J. H. Kim, and H. Yamamori, J. Korean Physical Society, 71, 571 (2017). Crossref
  14. A. A. Sugumaran, Y. Purandare, K. Shukla, I. Khan, A. Ehiasarian, and P. Hovsepian, J. Coatings, 11, No. 7, 867 (2021). Crossref