Aluminium Ion Implantation in Stainless Steel

V. Honcharov$^{1}$, V. Zazhigalov$^{1}$, M. Honcharova$^{2}$

$^{1}$Institute for Sorption and Problems of Endoecology, NAS of Ukraine, 13 Generala Naumova Str., 03164 Kyiv, Ukraine
$^{2}$Kharkiv I.P. Kotlyarevsky National University of Arts, 11/13 Maidan Konstytutsii, UA-61003 Kharkiv, Ukraine

Received: 09.11.2022; final version - 28.02.2023. Download: PDF

As established, the implantation of aluminium in a stream of nitrogen ions on the stainless-steel surface leads to a partial recrystallization (‘ferritization’, inoculation with defect formation) of the carrier matrix. The SEM shows the formation of aluminium coating with thickness up to 100 nm on the carrying surface as a result of implantation. The results of XPS surface study demonstrate that this surface layer contains of the x-ray amorphous aluminium nitride, oxide and oxynitride compounds. The oxidation of composite (implant) leads to the destruction of nitrogen-containing compounds, and alumina become the base surface-layer compound. Both the specific surface area and the mechanical strength of the surface layer increase significantly after implantation and oxidation of implant as well as growth of the implantation dose too. The changes of the surface structure and morphology as well as formation of chemical compounds on the carrying agent influence on the thermal-physical characteristics (namely, increase of surface temperature and air near-surface temperature is observed) in comparison with the untreated sample.

Key words: morphology, ionic implantation, phase composition, mechanical strength.



PACS: 61.05.cp, 61.72.up, 65.60.+a, 68.37.Hk, 68.37.Ps, 68.55.Ln, 82.80.Pv

Citation: V. Honcharov, V. Zazhigalov, and M. Honcharova, Aluminium Ion Implantation in Stainless Steel, Metallofiz. Noveishie Tekhnol., 45, No. 6: 757—771 (2023)

  1. H. Kang, C. I. Garcia, K. Chin, and A. J. Deardo, ISIJ Int., 47, No. 3: 486 (2007). Crossref
  2. Novyye Materialy [New Materials] (Ed. Yu. S. Karabasov) (Moskva: MISiS: 2002) (in Russian).
  3. Y. Adraider, S. N. B. Hodgson, M. C. Sharp, Z. Y. Zhang, F. Nabhani, A. Al-Waidh, and Y. X. Pang, JECS, 32, No. 16: 4229 (2012). Crossref
  4. S. El Hajjaji, M. El Alaoui, P. Simon, A. Guenbour, A. Ben Bachir, E. Puech-Costes, M.-T. Maurette, and L. Aries, STAM, 6, No. 5: 519 (2005). Crossref
  5. T. Novakovic, N. Radic, B. Grbic, V. Dondur, M. Mitric, D. Randjelovic, D. Stoychev, and P. Stefanov, Applied Surface Science, 255, No. 5: 3049 (2008). Crossref
  6. P. Stefanov, D. Stoychev, A. Aleksandrova, D. Nicolova, G. Atanasova, and Ts. Marinova, Applied Surface Science, 235, Nos. 1-2: 80 (2004). Crossref
  7. M. P. Vorob'eva, A. A. Greish, A. V. Ivanov, and L. M. Kustov, Appl. Catalysis A: General, 199, No. 2: 257 (2000). Crossref
  8. K. Spencer, D. M. Fabijanic, and M.-X. Zhang, Surface and Coatings Technology, 206, Nos. 14-15: 3275 (2012). Crossref
  9. N. I. Radishevskaya and V. I. Vereshchagin, Butlerovskie Soobshcheniya, 25, No. 8: 75 (2011) (in Russian).
  10. B. A. Kalin, Fizika i Khimiya Obrabotki Materialov, 4, No. 5: 5 (2001) (in Russian).
  11. A. A. Cherny, S. V. Maschenko, V. V. Honcharov, and V. A. Zazhigalov, Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. Springer Proceedings in Physics (Cham: Springer: 2015), vol.167, p. 203. Crossref
  12. L. B. Begrambekov, Modifikatsiya Poverkhnosti Tverdykh Tel pri Ionnom i Plazmennom Vozdeystvii [Surface Modification of Solids at the Ionic and Plasma Actions] (Moskva: MIFI: 2001) (in Russian).
  13. M. G. Bannikov, J. A. Chattha, V. N. Zlobin, I. P. Vasilev, J. A. Cherkasov, and P. N. Gawrilenko, Proc. of the 7th International Symposium on Advanced Materials (Sep. 17-21, 2001) (Islamabad, Pakistan: International Atomic Energy Agency (IAEA): 2001), p. 341.
  14. V. Honcharov and V. Zazhigalov, Int. J. Biosen Bioelectron, 4, No. 3: 98 (2018).
  15. I. N. Golikov, A. P. Gulyayev, A. S. Kaplan, and O. I. Putimtseva, Stali Vysokolegirovannyye i Splavy Korrozionnostoykie, Zharostoykie i Zharoprochnyye. Marki [High-Alloy Steels and Alloys, Which Are Corrosion-Resistant, Heat-Resistant and Heat-Resistant. Grades] (GOST 5632-72) (Moskva: Gosudarstvennyy Komitet Standartov Soveta Ministrov SSSR: 1975) (in Russian).
  16. M. Nomura, B. Meester, J. Schoonman, F. Kapteijn, and J. A. Moulijn, Separation and Purification Technology, 32, Nos. 1-2: 387 (2003). Crossref
  17. D. Truyen, M. Courty, P. Alphonse, and F. Ansart, Thin Solid Films, 495, Nos. 1-2: 257 (2006). Crossref
  18. T. Giornelli, A. Lofberg, L. Guillou, S. Paul, V. Le Courtois, and E. Bordes-Richard, Catalysis Today, 128, Nos. 3-4: 201 (2007). Crossref
  19. Lenta Kholodnokatanaya iz Korrozionnostoykoy i Zharostoykoy Stali. Tekhnicheskie Usloviya [Cold-Rolled Strips of Corrosion-Resistant and Heat-Resistant Steel. Specifications] (GOST 4986-79) (Moskva: Gosudarstvennyy Komitet Standartov Soveta Ministrov SSSR: 1980) (in Russian).
  20. A. V. Katruha, V. V. Goncharov, and V. O. Zazhigalov, Int. J. Energy for a Clean Environment, 17, Nos. 2-4: 133 (2016). Crossref
  21. V. Honcharov, V. Zazhigalov, Z. Sawlowicz, R. Socha, and J. Gurgol, Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO 2016. Springer Proceedings in Physics (Cham: Springer: 2017), vol. 195, p. 355 (2017). Crossref
  22. S. Kryvoruchko, A. Kryvoruchko, V. V. Honcharov, and V. O. Zazhigalov, Ukrainian Journal of Physics, 67, No. 4: 292 (2022). Crossref
  23. V. V. Goncharov, A. O. Klimash, V. O. Zazhigalov, and V. M. Orlik, Fizika i Khimiya Tverdoho Tila, 12, No. 36: 762 (2011) (in Ukrainian).
  24. J. Dudognon, M. Vayer, A. Pineau, and R. Erre, Surface & Coating Technology, 202, No. 20: 5048 (2008). Crossref
  25. Y. D. Park, I. S. Maroef, A. Landau, and D. L. Olson, Welding J., 81, No. 2: 27 (2002).
  26. S. O. Muradyan, Struktura i Svoystva Liteynoy Korrozionnostoykoy Stali, Legirovannoy Azotom [Structure and Properties of Nitrogen-Alloyed Corrosion-Resistant Steel] (Thesis of Disser. for PhD) (Moskva: Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences: 2015) (in Russian).
  27. A. I. Mihaylyuk and G. F. Volodina, Ehlektronnaya Obrabotka Materialov, 6: 53 (2010) (in Russian).
  28. O. B. Perevalova, Mikrostruktura Legirovannykh Staley [Microstructure of Alloyed Steels] (Tomsk: TGASU: 2011) (in Russian).
  29. Ya. E. Gol'dshtein and V. G. Mizin, Inokulirovanie Zhelezouglerodistykh Rasplavov [Inoculation of Iron-Carbon Melts] (Moskva: Metallurgiya: 1993) (in Russian).
  30. XPS Data Base. THERMO Electron France Les Mimosas, 16 Av du Quebec SILIC 765, 91963 COURTABOEUF CEDEX:
  31. V. I. Nefedov, Rentgenoehlektronnaya Spektroskopiya Khimicheskikh Soyedineniy [X-Ray Electron Spectroscopy of Chemical Compounds] (Moskva: Khimiya: 1984) (in Russian).
  32. Izmerenie Mikrotverdosti Tsarapaniem Almaznymi Nakonechnikami [Measurement of Microhardness by Scratching with Diamond Instruments] (GOST 21318-75) (Moskva: Gosudarstvennyy Komitet Standartov Soveta Ministrov SSSR: 1975) (in Russian).