Machining of Titanium Alloys With a Cemented Carbide Cutting Tools with Tungsten-Based Vacuum-Arc Nitride Coatings

I. V. Serdiuk$^{1}$, V. O. Stolbovyi$^{1}$, V. Bushlya$^{2}$, R. V. Kryvoshapka$^{1}$, Remi Lemaire$^{2}$, Romain Walter$^{2}$

$^{1}$National Science Center ‘Kharkiv Institute of Physics and Technology’, NAS of Ukraine, 1 Akademichna Str., UA-61108 Kharkiv, Ukraine
$^{2}$Lund University, 1 Ole Römers Str., SE-22100 Lund, Sweden

Received: 08.08.2023; final version - 20.08.2023. Download: PDF

Finding the right coatings for cutting tools is essential in order to increase the tool wear resistance and, thus, to get better surface roughness for the machined workpieces, and to improve productivity. A coating requirements are not only its mechanical and strength properties, but also its response to a given load and a given wear exposure. To expand ideas about the phenomena and mechanisms of wear of tungsten-based vacuum-arc coatings on the cemented carbides-based cutting tools during mechanical processing of titanium alloy Ti–6Al–4V, vacuum-arc W–N, W–Zr–N, W–Nb–N, W–Cr–N, W–Mo–N, W–TiSi–N, W–TiAlYCr–N coatings are obtained, investigated and tested on the CNC turning machine SMT 500 Swedturn with use of 8%-oil–water emulsion under pressure of 10 bars. Several main wear mechanisms and their influence on the geometry of vacuum-arc coatings are established, and factors influencing on the improvement of the operational properties of the tool are investigated.

Key words: vacuum-arc coatings, cemented carbides-based cutting tools, wear mechanisms, machining of titanium alloys, wear resistance.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i08/0993.html

DOI: https://doi.org/10.15407/mfint.45.08.0993

PACS: 06.60.Vz, 46.55.+d, 68.37.Hk, 81.15.-z, 81.20.Wk, 81.40.Pq, 81.65.Lp

Citation: I. V. Serdiuk, V. O. Stolbovyi, V. Bushlya, R. V. Kryvoshapka, Remi Lemaire, and Romain Walter, Machining of Titanium Alloys With a Cemented Carbide Cutting Tools with Tungsten-Based Vacuum-Arc Nitride Coatings, Metallofiz. Noveishie Tekhnol., 45, No. 8: 993—1014 (2023) (in Ukrainian)


REFERENCES
  1. A. G. Molyar, A. A. Kotsyuba, A. S. Bychkov, and O. Yu. Nechyporenko, Konstruktsionnyye Materialy v Samolyotostroenii [Structural Materials in Aircraft Construction] (Kiev: KVITs: 2015) (in Russian).
  2. J. C. Williams and R. R. Boyer, Metals, 10, No. 6: 705 (2020). Crossref
  3. G. He and M. Hagiwara, Mater. Sci. Eng. C, 26, No. 1: 14 (2006). Crossref
  4. S. X. Liang, X. J. Feng, L. X. Yin, X. Y. Liu, M. Z. Ma, and R. P. Liu, Mater. Sci. Eng. C, 61: 338 (2016). Crossref
  5. R. Karre, M. K. Niranjan, and S. R. Dey, Mater. Sci. Eng. C, 50: 52 (2015). Crossref
  6. M. F. Ijaz, H. Y. Kim, H. Hosoda, and S. Miyazaki, Mater. Sci. Eng. C, 48: 11 (2015). Crossref
  7. I. Gurrappa, Mater. Charact., 51, Nos. 2-3: 131 (2003). Crossref
  8. C. Veiga, J. P. Davim, and A. J. R. Loureiro, Rev. Adv. Mater. Sci., 32: 14 (2012).
  9. J. C. Fanning, J. Mater. Eng. Perform., 14: 788 (2005).
  10. M. Peters, J. Hemptenmacher, J. Kumpfert, and C. Leyens, Titanium and Titanium Alloys: Fundamentals and Applications (Eds. C. Leyens and M. Peters) (Wiley-VCH Verlag, GmbH & Co.: KGaA: 2003). Crossref
  11. S. L. Starikova and V. V. Starikov, Bulletin of Problems in Biology and Medicine, 2, No. 2 (108): 160 (2014) (in Russian).
  12. H. Serhan, M. Slivka, T. Albert, and S. D. Kwak, Spine J., 4, No. 4: 379 (2004). Crossref
  13. F. Guillemont, Expert Rev. Med. Devic., 2, No. 6: 741 (2005).
  14. M. Niinomi, J. Mech. Behav. Biomed. Mater., 1, No. 1: 30 (2008).
  15. V. K. Bilanenko, Sci. J. «. The Art of Scientific Mind», 2: 90 (2019) (in Ukrainian).
  16. S. E. Sheikin, I. M. Pogrelyuk, and D. A. Sergach, J. Superhard Mater., 37, No. 5: 75 (2015). Crossref
  17. A. S. Manokhin, S. A. Klymenko, V. O. Stolboviy, I. V. Kolodiy, M. Yu. Kopieikina, S. An. Klymenko, K. V. Kamchatna-Stepanova, and I. V. Serdyuk, J. Superhard Mater., 44, No. 5: 368 (2022). Crossref
  18. I. V. Serdiuk, V. O. Stolboviy, A. V. Dolomanov, and V. M. Domnich, Metallofiz. Noveishie Tekhnol., 44, No. 4: 547 (2022) (in Ukrainian).
  19. H. O. Postelnyk, O. V. Sobol', V. A. Stolbovoy, I. V. Serdiuk, and O. Chocholaty, Probl. Atom. Sci. Tech., 2: 139 (2020). Crossref
  20. V. F. Gorban', R. A. Shaginyan, N. A. Krapivka, S. A. Firstov, N. I. Danilenko, and I. V. Serdyuk, Powder Metall. Met. Ceram., 54, Nos. 11-12: 725 (2016). Crossref
  21. O. V. Sobol', A. A. Andreev, R. P. Mygushchenko, V. M. Beresnev, A. A. Meylekhov, A. A. Postelnyk, S. A. Kravchenko, T. A. Tabaza, S. M. Al-Qawabah, U. F. Al-Qawabeha, V. A. Stolbovoy, I. V. Serdyuk, D. A. Kolesnikov, and M. G. Kovaleva, Probl. Atom. Sci. Tech., 1: 82 (2018).
  22. A. A. Andreev, V. A. Stolbovoy, and I. V. Serdiuk, East.-Eur. J. Enterp. Tech., 2, No. 5: 65 (2011) (in Russian).
  23. O. V. Sobolʼ, A. A. Postelnyk, A. A. Meylekhov, A. A. Andreev, V. A. Stolbovoy, and V. F. Gorban, J. Nano- Electron. Phys., 9, No. 3: 03003 (2017).
  24. N. S. Akhmetov, Obshchaya i Neorganicheskaya Khimiya [General and Inorganic Chemistry] (Moskva: Vysshaya Shkola: 2001) (in Russian).
  25. M. S. I. Chowdhury, B. Bose, K. Yamamoto, L. S. Shuster, J. Paiva, G. S. Fox-Rabinovich, and S. C. Veldhuis, Wear, 446-447: 203168 (2020). Crossref
  26. Modern Metal Cutting: A Practical Handbook (Sandvik Coroman: 1994).
  27. J.-E. Stahl, Metal Cutting Theories and Models (SECO TOOLS AB: 2012).
  28. S. Koseki, K. Inoue, and H. Usuki, Precision Eng., 44: 41 (2016). Crossref