A Physically-Based Criterion for Determining the Critical Brittleness Temperature from Charpy Impact PRV Tests for Reactor Steels and Their Welds

S. Kotrechko$^{1}$, V. Revka$^{2}$, K. Soroka$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Institute for Nuclear Research, NAS of Ukraine, 47 Nauky Ave., 03680 Kyiv, Ukraine

Received: 10.08.2023; final version - 22.08.2023. Download: PDF

Based on ideas about physical nature of brittle and ductile fractures of RPV steels, the criterion for determining the critical temperature of brittleness from the Charpy impact test data is proposed. As shown in the first approximation, the criterion of constancy of local plastic deformation at head of stress raiser can be used to specify the level of impact toughness $KCV_{th}$ depending on the yield stress $\sigma_{0.2}$. As theoretically proved, the threshold level of impact toughness is not an unambiguous function of $\sigma_{0.2}$. An additional influence is exerted by factors, which characterize the ability of RPV metal to resist brittle fracture under stress concentration conditions, in particular, the brittle strength $R_{MC}$. An approximate analytical relationship is derived, which allows predicting the level of $KCV_{th}$ considering the strength of the RPV metal. In the range of yield strength 400–690 MPa, this relationship is consistent with the $KCV_{th}$ values, which are given in the PNAE G-7-002-86 standard.

Key words: critical brittleness temperature, impact toughness threshold, radiation embrittlement, Charpy impact test, pressure vessel steels.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i08/1015.html

DOI: https://doi.org/10.15407/mfint.45.08.1015

PACS: 46.50.+a, 62.20.fk, 62.20.fq, 62.20.mj, 62.20.mm, 62.20.mt, 81.40.Np

Citation: S. Kotrechko, V. Revka, and K. Soroka, A Physically-Based Criterion for Determining the Critical Brittleness Temperature from Charpy Impact PRV Tests for Reactor Steels and Their Welds, Metallofiz. Noveishie Tekhnol., 45, No. 8: 1015—1027 (2023)


REFERENCES
  1. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels, ASTM E185-16 (2016).
  2. K. Wallin, Innovative Approaches to Irradiation Damage and Fracture Analysis, ASME Pressure Vessels and Piping Conference-JSME Co-sponsorship (July 23-27, 1989, Honolulu, Hawaii).
  3. B. Tanguy, J. Besson, R. Piques, and A. Pineau, Engng. Fract. Mech., 72: 49 (2005). Crossref
  4. Normy Raschyota na Prochnost Oborudovaniya i Truboprovodov Atomnykh Ehnergeticheskih Ustanovok [Standards for Strength Calculation of Equipment and Pipelines of Nuclear Power Plants], PNAE G-7-002-86 (in Russian).
  5. S. A. Kotrechko and Yu. Ya. Meshkov, Problemy Prochnosti, No. 4: 352 (2001) (in Russian).
  6. S. A. Kotrechko, Yu. N. Podrezov, I. N. Maksimchuk, and A. V. Kranikov, Mekhanicheskoe Razrushenie Materialov [Mechanical Failure of Materials]. Inorganic Materials Science (Eds. G. G. Gnesin and V. V. Skorohod) (Kiev: Naukova Dumka: 2007), vol. 1 (in Russian).
  7. S. A. Kotrechko, Yu. Ya. Meshkov, and G. S. Mettus, Metallofiz. Noveishie Tekhnol., 12, No. 6: 3 (1990) (in Russian).
  8. S. A. Kotrechko and Yu. Ya. Meshkov, Ukr. Phys. J., 36, No. 7: 1087 (1991) (in Russian).
  9. S. A. Kotrechko, Yu. Ya. Meshkov, G. S. Mettus, and D. I. Nikonenko, Problemy Prochnosti, No. 1: 72 (2000).
  10. S. A. Kotrechko and Yu. Ya. Meshkov, Problemy Prochnosti, No. 2: 55 (2009) (in Russian).
  11. S. A. Kotrechko and Yu. Ya. Meshkov, Predelnaya Prochnost. Kristally, Metally, Konstruktsii [Ultimate Strength. Crystals, Metals, Structures] (Kiev: Naukova Dumka: 2008) (in Russian).
  12. Materialy Metalevi. Vyprobuvannya na Udarnyi Vygyn za Charpi. Chastyna 1. Metody Vyprobuvannya [Metallic Materials. Charpy Impact Bending Test. Part 1. Test Method], DSTU EN 10045-1:2006 (in Ukrainian).
  13. S. Kotrechko, B. Strnadel, and I. Dlouhy, Appl. Fract. Mech., 47: 171 (2007). Crossref
  14. Inzhenernaya, Nauchnaya i Tekhnicheskaya Podderzhka. Metodika Opredeleniya Radiatsionnogo Okhrupchivaniya Metalla Korpusov Reaktorov i Srokov Vygruzki Obraztsov-Svideteley po Rezultatam Ikh Ispytaniy, [Engineering, Scientific and Technical Support. Method for Determining the Radiation Embrittlement of The Metal of Reactor Vessels and The Timing of Unloading Witness Samples Based on The Results of Their Tests], SOU NAEK 087:2015 (in Russian).
  15. F. J. Zerilli, and R. W. Armstrong, J. Appl. Phys., 65, No. 5: 1816 (1987). Crossref
  16. V. D. Yaroshevich and D. G. Ryvkina, Fiz. Met. Metalloved., 31, Iss. 6: 1293 (1971) (in Russian).