Processing math: 100%

Single-Step Pressureless Synthesis of the High-Purity Ti3AlC2 MAX-Phase by Fast Heating

I. M. Kirian1, A. M. Lakhnik1, O. Yu. Khyzhun2, I. V. Zagorulko1, A. S. Nikolenko3, O. D. Rud’1

1G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
2I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine
3V. E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Nauky Ave., UA-03028 Kyiv, Ukraine

Received: 03.07.2023; final version - 19.09.2023. Download: PDF

A simple approach is presented to synthesise the high-purity MAX phase by the pressureless method. This method is featured by the short time in duration. The process is executed with a high heating rate (up to 102 K/min) that inhibits the formation of the objectionable phases and limits elemental loss due to the short-time process. The samples containing 96% wt. of the MAX phase Ti3AlC2 are successfully synthesised using the proposed technique.

Key words: MAX phase, pressureless synthesis, fast heating, ball milling.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i10/1165.html

DOI: https://doi.org/10.15407/mfint.45.10.1165

PACS: 61.05.cp, 77.84.Bw, 78.30.Hv, 81.05.Je, 81.20.Ev, 81.20.Wk, 82.80.Pv

Citation: I. M. Kirian, A. M. Lakhnik, O. Yu. Khyzhun, I. V. Zagorulko, A. S. Nikolenko, and O. D. Rud’, Single-Step Pressureless Synthesis of the High-Purity Ti3AlC2 MAX-Phase by Fast Heating, Metallofiz. Noveishie Tekhnol., 45, No. 10: 1165—1177 (2023)


REFERENCES
  1. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Adv. Mater., 23: 4248 (2011). Crossref
  2. M. Sokol, V. Natu, S. Kota, and M. W. Barsoum, Trends. Chem., 1: 210 (2019). Crossref
  3. C. Anirudh, A. V. Vaibhav Koushik, and U. N. Kempaiah, Int. J. Emerging Technol. Adv. Eng., 4, Iss. 8: 624 (2014).
  4. I. M. Low, Advances in Science and Technology of Mn+1AXn Phases (Elsevier: 2012).
  5. A. A. Smetkin and Iu. K. Maiorova, Bulletin PNRPU Mech. Eng., Mater. Sci., 17: 120 (2015) (in Russian). Crossref
  6. X. H. Wang and Y. C. Zhou, J. Mater. Sci. Technol., 26: 385 (2010).
  7. C. Peng, C.-A. Wang, Y. Song, and Y. Huang, Mater. Sci. Eng. A, 428: 54 (2006). Crossref
  8. J. F. Li, T. Matsuki, and R. Watanabe, J. Am. Ceram. Soc., 85, Iss. 4: 1004 (2004).
  9. A. G. Zhou, C. A. Wang, Z. B. Ge, and L. Wu, J. Mater. Sci. Lett., 20: 1971 (2001). Crossref
  10. T. El-Raghy and M. W. Barsoum, J. Am. Ceram. Soc., 82, Iss. 10: 2849 (2004). Crossref
  11. C. Yanga, S. Z. Jin, B. Y. Liang, and S. S. Jia, J. European Ceram. Soc., 29: 181 (2009). Crossref
  12. W. B. Zhou, B. C. Mei, J. Q. Zhu, and X. L. Hong, Mater. Lett., 59: 131 (2005). Crossref
  13. O. Syzonenko, M. Prystash, A. Zaichenko, A. Torpakov, Ye. Lypian, A. Rud, I. Kirian, A. Lakhnik, E. Shregii, S. Prokhorenko, R. Wojnarowska-Nowak, and J. Kandrotaite, Machines. Technologies. Materials, 12: 395 (2018).
  14. A. D. Rud, A. M. Lakhnik, I. M. Kirian, O. N. Sizonenko, A. D. Zaychenko, N. S. Pristash, and N. D. Rud, Mater. Today: Proc., 5: 26084 (2018). Crossref
  15. T. Ai, F. Wang, Y. Zhang, P. Jiang, and X. Yuan, Adv. Appl. Ceram., 112: 424 (2013).
  16. C. Peng, C. Wang, and Y. Huang, Key Eng. Mater., 280-283: 1369 (2005). Crossref
  17. A. Mingxing, Z. Hongxiang, Z. Yang, T. Zhaoyun, H. Zhenying, Z. Zhili, and L. Shibo, J. Am. Ceram. Soc., 89, Iss. 3: 1114 (2006). Crossref
  18. L. Luterotti and S. Gialanella, Acta Mater., 46, Iss. 1: 101 (1998). Crossref
  19. G. Zhang, J. Niu, and H. Xu, J. Phys.: Conf. Ser., 1507: 042007 (2020). Crossref
  20. Y. Ma, T. Chen, L. Gou, and W. Ding, Mater., 14: 6739 (2021). Crossref
  21. V. Presser, M. Naguib, L. Chaput, A. Togo, G. Hug, and M. W. Barsoum, J. Raman Spectrosc., 43: 168 (2012).
  22. M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Weinheim: Wiley-VCH Verlag: 2013). Crossref
  23. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corp.: 1979).
  24. J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosenand, and M. W. Barsoum, Appl. Surf. Sci., 362: 406 (2016). Crossref
  25. L. A. Näslund, O. Å. Persson Per, and J. Rosen, J. Phys. Chem. C, 124: 27732 (2020). Crossref
  26. D. Bandyopadhyay, R. C. Sharma, and N. Chakraborti, J. Phase Equilibria, 21: 195 (2000). Crossref
  27. W. Zhou, B. Mei, J. Zhu, and X. Hong, J. Mater. Sci., 40: 2099 (2005). Crossref
  28. S. Li, W. Xiang, H. Zhai, Y. Zhou, C. Li, and Z. Zhang, Mater. Res. Bull., 43: 2092 (2008). Crossref
  29. Z. Y. Zhong, H. Saka, T. H. Kim, E. A. Holm, Y. F. Han, and X. S. Xie, Mater. Sci. Forum, 475-479: 1247 (2005).
  30. D. Zhao, S. Xia, Y. Wang, and M. Wang, Appl. Phys. A, 126: 69 (2020). Crossref