Single-Step Pressureless Synthesis of the High-Purity Ti$_{3}$AlC$_{2}$ MAX-Phase by Fast Heating

I. M. Kirian$^{1}$, A. M. Lakhnik$^{1}$, O. Yu. Khyzhun$^{2}$, I. V. Zagorulko$^{1}$, A. S. Nikolenko$^{3}$, O. D. Rud’$^{1}$

$^{1}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{2}$Институт проблем материаловедения им. И. Н. Францевича НАН Украины, ул. Омельяна Прицака, 3, 03142 Киев, Украина
$^{3}$Институт физики полупроводников им. В. Е. Лашкарёва НАН Украины, просп. Науки, 41, 03028 Киев, Украина

Получена: 03.07.2023; окончательный вариант - 19.09.2023. Скачать: PDF

A simple approach is presented to synthesise the high-purity MAX phase by the pressureless method. This method is featured by the short time in duration. The process is executed with a high heating rate (up to $\cong 10^{2}$ K/min) that inhibits the formation of the objectionable phases and limits elemental loss due to the short-time process. The samples containing $\cong$ 96% wt. of the MAX phase Ti$_{3}$AlC$_{2}$ are successfully synthesised using the proposed technique.

Ключевые слова: MAX phase, pressureless synthesis, fast heating, ball milling.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i10/1165.html

PACS: 61.05.cp, 77.84.Bw, 78.30.Hv, 81.05.Je, 81.20.Ev, 81.20.Wk, 82.80.Pv


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Adv. Mater., 23: 4248 (2011). Crossref
  2. M. Sokol, V. Natu, S. Kota, and M. W. Barsoum, Trends. Chem., 1: 210 (2019). Crossref
  3. C. Anirudh, A. V. Vaibhav Koushik, and U. N. Kempaiah, Int. J. Emerging Technol. Adv. Eng., 4, Iss. 8: 624 (2014).
  4. I. M. Low, Advances in Science and Technology of Mn+1AXn Phases (Elsevier: 2012).
  5. A. A. Smetkin and Iu. K. Maiorova, Bulletin PNRPU Mech. Eng., Mater. Sci., 17: 120 (2015) (in Russian). Crossref
  6. X. H. Wang and Y. C. Zhou, J. Mater. Sci. Technol., 26: 385 (2010).
  7. C. Peng, C.-A. Wang, Y. Song, and Y. Huang, Mater. Sci. Eng. A, 428: 54 (2006). Crossref
  8. J. F. Li, T. Matsuki, and R. Watanabe, J. Am. Ceram. Soc., 85, Iss. 4: 1004 (2004).
  9. A. G. Zhou, C. A. Wang, Z. B. Ge, and L. Wu, J. Mater. Sci. Lett., 20: 1971 (2001). Crossref
  10. T. El-Raghy and M. W. Barsoum, J. Am. Ceram. Soc., 82, Iss. 10: 2849 (2004). Crossref
  11. C. Yanga, S. Z. Jin, B. Y. Liang, and S. S. Jia, J. European Ceram. Soc., 29: 181 (2009). Crossref
  12. W. B. Zhou, B. C. Mei, J. Q. Zhu, and X. L. Hong, Mater. Lett., 59: 131 (2005). Crossref
  13. O. Syzonenko, M. Prystash, A. Zaichenko, A. Torpakov, Ye. Lypian, A. Rud, I. Kirian, A. Lakhnik, E. Shregii, S. Prokhorenko, R. Wojnarowska-Nowak, and J. Kandrotaite, Machines. Technologies. Materials, 12: 395 (2018).
  14. A. D. Rud, A. M. Lakhnik, I. M. Kirian, O. N. Sizonenko, A. D. Zaychenko, N. S. Pristash, and N. D. Rud, Mater. Today: Proc., 5: 26084 (2018). Crossref
  15. T. Ai, F. Wang, Y. Zhang, P. Jiang, and X. Yuan, Adv. Appl. Ceram., 112: 424 (2013).
  16. C. Peng, C. Wang, and Y. Huang, Key Eng. Mater., 280–283: 1369 (2005). Crossref
  17. A. Mingxing, Z. Hongxiang, Z. Yang, T. Zhaoyun, H. Zhenying, Z. Zhili, and L. Shibo, J. Am. Ceram. Soc., 89, Iss. 3: 1114 (2006). Crossref
  18. L. Luterotti and S. Gialanella, Acta Mater., 46, Iss. 1: 101 (1998). Crossref
  19. G. Zhang, J. Niu, and H. Xu, J. Phys.: Conf. Ser., 1507: 042007 (2020). Crossref
  20. Y. Ma, T. Chen, L. Gou, and W. Ding, Mater., 14: 6739 (2021). Crossref
  21. V. Presser, M. Naguib, L. Chaput, A. Togo, G. Hug, and M. W. Barsoum, J. Raman Spectrosc., 43: 168 (2012).
  22. M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Weinheim: Wiley-VCH Verlag: 2013). Crossref
  23. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corp.: 1979).
  24. J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosenand, and M. W. Barsoum, Appl. Surf. Sci., 362: 406 (2016). Crossref
  25. L. A. Näslund, O. Å. Persson Per, and J. Rosen, J. Phys. Chem. C, 124: 27732 (2020). Crossref
  26. D. Bandyopadhyay, R. C. Sharma, and N. Chakraborti, J. Phase Equilibria, 21: 195 (2000). Crossref
  27. W. Zhou, B. Mei, J. Zhu, and X. Hong, J. Mater. Sci., 40: 2099 (2005). Crossref
  28. S. Li, W. Xiang, H. Zhai, Y. Zhou, C. Li, and Z. Zhang, Mater. Res. Bull., 43: 2092 (2008). Crossref
  29. Z. Y. Zhong, H. Saka, T. H. Kim, E. A. Holm, Y. F. Han, and X. S. Xie, Mater. Sci. Forum, 475–479: 1247 (2005).
  30. D. Zhao, S. Xia, Y. Wang, and M. Wang, Appl. Phys. A, 126: 69 (2020). Crossref