The Solid Solutions of Heusler Alloys (Pd$_{1-x}Me_{x})_{2}$MnSn ($Me$ = Co, Ni, $x$ = 0.0–1.0): Energy, Charge, and Magnetic Characteristics

V. M. Uvarov, M. V. Uvarov, Y. V. Kudryavtsev, E. M. Rudenko, I. M. Makeieva

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 20.12.2023; final version - 10.01.2024. Download: PDF

Information on the energy, charge, and spin characteristics of Pd$_{1-x}Me_{x}$MnSn ($Me$ = Co, Ni, $x$ = 0.0–1.0) is obtained using band calculations within the FLAPW (full-potential linearized augmented-plane-wave) model. As determined, an increase in the concentration of the cobalt or nickel atoms leads to an increase in the interatomic electron density inside the alloys. This results in both a concurrent reduction in the parameters of their crystal lattices and an increase in the binding energies of the atoms. The number of electrons $Q$ within the atomic spheres of Pd, Mn, and Sn in cobalt-containing alloys exceeds the corresponding values for nickel-containing phases, and the dependences of $Q$ exhibit a systematic tendency to increase with the growth of substitutional-atoms’ concentrations. The observed polarization of valence electrons leads to the appearance of magnetic moments on the atoms of the alloys. The magnetic moments of metal atoms are ferromagnetically ordered, and their magnitude depends on the type and concentration of substitutional atoms.

Key words: band calculations, Heusler alloys, electronic structure, magnetic moments, polarized electronic states, spintronics.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i02/0097.html

DOI: https://doi.org/10.15407/mfint.46.02.0097

PACS: 61.50.Lt, 71.15.Ap, 71.15.Nc, 71.20.-b, 75.10.Lp, 75.50.Cc, 85.75.-d

Citation: V. M. Uvarov, M. V. Uvarov, Y. V. Kudryavtsev, E. M. Rudenko, and I. M. Makeieva, The Solid Solutions of Heusler Alloys (Pd$_{1-x}Me_{x})_{2}$MnSn ($Me$ = Co, Ni, $x$ = 0.0–1.0): Energy, Charge, and Magnetic Characteristics, Metallofiz. Noveishie Tekhnol., 46, No. 2: 97—109 (2024)


REFERENCES
  1. F. Heusler, Verh. Dtsch. Phys. Ges., 5: 219 (1903).
  2. D. F. Oxley, R. S. Tebble, and F. C. Williams, J. Appl. Phys., 34: 1362 (1963). Crossref
  3. P. J. Webster, Contemp. Phys., 10: 559 (1969). Crossref
  4. F. A. Hames and J. Crangle, J. Appl. Phys., 42: 1336 (1971). Crossref
  5. G. E. Bacon and J. S. Plant, J. Phys. F: Metal Phys., 1: 524 (1971). Crossref
  6. C. C. M. Campbell, J. Phys. F: Metal Phys., 5: 1931 (1975). Crossref
  7. P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, Phil. Mag. B, 49: 295(1984). Crossref
  8. K. R. A. Ziebeck and P. J. Webster, J. Phys. F: Metal Phys., 5: 1756 (1984). Crossref
  9. T. Graf, C. Felser, and S. S. P. Parkin, Progress in Solid State Chem., No. 39: 1 (2011). Crossref
  10. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, arXiv:cond-mat/0203534v3 (2002).
  11. C. Felser, G. H. Fecher, and B. Balke, Angew. Chem. Int. Ed., No. 46: 668 (2007). Crossref
  12. I. Galanakis and P. H. Dederichs, Lect. Notes Phys., 676: 1 (2005). Crossref
  13. J. Kubler, A. R. Williams, and C. B. Sommers, Phys. Rev. B, 28, No. 4: 1745 (1983). Crossref
  14. S. Plogmann, T. Schlatholter, J. Braun, M. Neumann, Yu. M. Yarmoshenko, M. V. Yablonskikh, E. I. Shreder, E. Z. Kurmaev, A. Wrona, and A. Ślebarski, Phys. Rev. B, 60, No. 9: 6428 (1999). Crossref
  15. Y. Kurtulus, M. Gilleben, and R. Dronskowski, J. Comput. Chem., 27: 90 (2006). Crossref
  16. F. Aguilera-Granja, R. H. Aguilera-del-Toro, and J. L. Moran-Lopez, Mater. Research Express, 6, No. 10: 1 (2019). Crossref
  17. Fizika Tverdogo Tela: Ehntsiklopedicheskiy Slovar' [Solid State Physics: Encyclopaedic Dictionary] (Kiev: Naukova Dumka: 1998) (in Russian).
  18. A. A. Povzner, A. G. Volkov, and A. N. Filanovich, Fizika Tverdogo Tela, 52, No. 10: 1879 (2010) (in Russian). Crossref
  19. P. P. J. van Engelen, D. B. de Mooij, J. H. Wijngaard, and K. H. J. Buschow, J. Magn. Magn. Mater., 130: 247 (1994). Crossref
  20. H. Masumoto and K. Watanabe, Trans. JIM, 17: 588 (1976). Crossref
  21. V. N. Uvarov, N. V. Uvarov, V. V. Zagorodnii, and A. S. Kruk, Ukr. J. Phys., 67, No. 5: 327 (2022). Crossref
  22. V. M. Uvarov and M. V. Uvarov, Metallofiz. Noveishie Tekhnol., 44, No. 8: 975 (2022). Crossref
  23. V. M. Uvarov, M. V. Uvarov, and M. V. Nemoskalenko, Metallofiz. Noveishie Tekhnol., 45, No. 4: 443 (2023). Crossref
  24. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, and L. D. Marks, WIEN2k, An Augmented Plane Wave  Local Orbitals Program for Calculating Crystal Properties (Wien: Techn. Universität: 2001).
  25. E. Uhl, Solid State Communications, 53, No. 4: 395 (1985). Crossref
  26. D. Singh, Plane Waves, Psedopotentials and LAPW Method (Kluwer Academic: 1994). Crossref
  27. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  28. http://www.wien2k.at/reg_user/faq
  29. Ch. Kittel, Einfuhrung in die Festkorperphysik (Munchen: Oldenbourg Verlag: 1983), p. 92.
  30. L. Schimka, J. Harl, and G. Kresse, J. Chem. Phys., 134: 024116 (2011). Crossref
  31. J. N. Murrell, S. F. A. Kettle, and J. M. Tedder, Teoriya Valentnosti [Valence Theory] (Moskva: Mir: 1968) (Russian translation).
  32. P. J. Webster, J. Phys. Chem. Solids, 32: 1221 (1971). Crossref