Fabricating an Ordered Array of Silver Nanoparticles $via$ the Nanosphere Lithography Technique

R. B. Abdulrahman

Department of Physics, College of Science, University of Kirkuk, IQ-36001 Kirkuk, Iraq

Received: 14.10.2023; final version - 15.11.2023. Download: PDF

The challenge of new technology is to produce inventive optical nanogratings, optical nanofilters, solar cell nanoabsorbers, antireflective surface coatings, and nanoelectronics by generating consistent patterns of various sizes and shapes of nanostructure on the smooth and solid surfaces. Nanosphere lithography (NSL) is a cost-effective and easy-to-implement technology that can be used to produce a diverse range of highly ordered nanoparticle-array structures. In this work, physical vapour deposition is used to grow large periodic arrays of silver nanoparticles and nanorings on patterned glass and silicon substrates. To achieve this, a single layer of self-assembled polystyrene nanospheres is firstly applied to the substrate to serve as a mask, and silver is then deposited through the mask. The spacing between the nanospheres can be adjusted by changing the diameter of the polystyrene nanospheres, which affects how the silver is deposited as nanodots or nanorings. The optical transmittance spectra of glass arrays can show significant variation depending on the specific nanostructure that is created. Regarding localized surface-plasmon resonance, nanorings display a red shift and a widening in the plasmon band. Possible uses for the resonance effect of the nanostructure are discussed.

Key words: nanosphere lithography, self-assembly, doctor blade, nanodots, nanorings, plasmonics.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i03/0223.html

DOI: https://doi.org/10.15407/mfint.46.03.0223

PACS: 07.60.-j, 07.79.-v, 73.20.Mf, 81.16.Dn, 81.16.Nd, 81.16.Rf

Citation: R. B. Abdulrahman, Fabricating an Ordered Array of Silver Nanoparticles $via$ the Nanosphere Lithography Technique, Metallofiz. Noveishie Tekhnol., 46, No. 3: 223—234 (2024)


REFERENCES
  1. A. Yadav, B. Gerislioglu, A. Ahmadivand, A. Kaushik, G. J. Cheng, Z. Ouyang, Q. Wang, V. S. Yadav, Y. K. Mishra, Y. Wu, Y. Liu, and S. Rama Krishna, Nano Today, 37: 101072 (2021). Crossref
  2. C. Jia, Z. Lin, Y. Huang, and X. Duan, Chem. Rev., 119: 9074 (2019). Crossref
  3. D. M. Balazs, T. A. Dunbar, D.-M. Smilgies, and T. Hanrath, Langmuir, 36: 6106 (2020). Crossref
  4. R. B. Abdulrahman, H. Cansizoglu, M. F. Cansizoglu, J. B. Herzog, and T. Karabacak, J. Vac. Sci. Technol. A, 33: 41501 (2015). Crossref
  5. L. Wang, M. Hasanzadeh Kafshgari, and M. Meunier, Adv. Funct. Mater., 30: 2005400 (2020). Crossref
  6. V. L. Karbivskyy, V. V. Zaika, L. I. Karbivska, N. A. Kurgan, and N. O. Zueva, Prog. Phys. Met., 22: 539 (2021). Crossref
  7. H. A. Shareef, N. B. Jafar, and R. B. Abdulrahman, Indian J. Public Heal. Res. Dev., 10: 2052 (2019). Crossref
  8. T. Sun, W. Song, Z. Qin, W. Guo, P. Wangyang, Z. Zhou, and Y. Deng, Photonics, 10: 60 (2023). Crossref
  9. R. A. M. Lameirinhas, J. P. N. Torres, A. Baptista, and M. J. M. Martins, IEEE Photonics J., 14: 1 (2022). Crossref
  10. M. Choi, T. Kang, S. H. Choi, and K. M. Byun, Opt. Express, 29: 6179 (2021). Crossref
  11. Z. Cai, Z. Li, S. Ravaine, M. He, Y. Song, Y. Yin, H. Zheng, J. Teng, and A. Zhang, Chem. Soc. Rev., 50: 5898 (2021). Crossref
  12. T. Qiu, E. M. Akinoglu, B. Luo, M. Konarova, J.-H. Yun, I. R. Gentle, and L. Wang, Adv. Mater., 34: 2103842 (2022). Crossref
  13. J. Li, Y. Hu, L. Yu, L. Li, D. Ji, L. Li, W. Hu, and H. Fuchs, Small, 17: 2100724 (2021). Crossref
  14. A. Royani, C. Verma, M. Hanafi, and A. Manaf, Prog. Phys. Met., 24: 197 (2023). Crossref
  15. H. Zheng, MRS Bull., 46: 443 (2021). Crossref
  16. J. Rybczynski, D. Banerjee, A. Kosiorek, M. Giersig, and Z. F. Ren, Nano Lett., 4: 2037 (2004). Crossref
  17. S. Luo, B. H. Hoff, S. A. Maier, and J. C. de Mello, Adv. Sci., 8: 2102756 (2021). Crossref
  18. P. Li, S. Chen, H. Dai, Z. Yang, Z. Chen, Y. Wang, Y. Chen, W. Peng, W. Shan, and H. Duan, Nanoscale, 13: 1529 (2021). Crossref
  19. E. Sharma, R. Rathi, J. Misharwal, B. Sinhmar, S. Kumari, J. Dalal, and A. Kumar, Nanomaterials, 12: 2754 (2022). Crossref
  20. F. Bayat and H. Tajalli, Heliyon, 6: e03382 (2020). Crossref
  21. D. A. B. Therien, N. M. Ćulum, D. M. McRae, L. Mazaheri, and F. Lagugné-Labarthet, Opt. Mater. (Amst.), 112: 110775 (2021). Crossref
  22. F. Bayat, P. Chaghamirzaei, A. Nikniazi, S. Ahmadi-Kandjani, M.-R. Rashidi, and H. Tajalli, Appl. Surf. Sci., 434: 898 (2018). Crossref
  23. A. Bayat, E. Saievar-Iranizad, E. Bayatloo, A. Zare, A. Arabkhorasani, and S. S. Polkoo, Eur. Phys. J. Plus, 135: 195 (2020). Crossref
  24. M. Domonkos and A. Kromka, Symmetry (Basel), 14: 2642 (2022). Crossref
  25. B. B. Choi, B. Kim, Y. Chen, S. J. Yoo, Y. Cho, and P. Jiang, J. Ind. Eng. Chem., 99: 179 (2021). Crossref
  26. A. Qdemat, E. Kentzinger, J. Buitenhuis, U. Rücker, M. Ganeva, and T. Brückel, RSC Adv., 10: 18339 (2020). Crossref
  27. S.-M. Yang, S. G. Jang, D.-G. Choi, S. Kim, and H. K. Yu, Small, 2: 458 (2006). Crossref
  28. N. Arai, S. Watanabe, and M. T. Miyahara, Langmuir, 35: 11533 (2019). Crossref
  29. S. Guo, B. Yu, F. Gao, S. Wang, Y. Shen, and H. Cong, J. Ind. Eng. Chem., 96: 34 (2021). Crossref
  30. D. Wu, M. Hu, Y. Zhang, J. Zhou, and Z. Wang, Appl. Surf. Sci., 505: 144520 (2020). Crossref
  31. H. Wahdat, M. Gerst, S. Möbius, and J. Adams, J. Appl. Polym. Sci., 137: 48972 (2020). Crossref
  32. R. A. Hussein, M. N. Ibrahim, and R. B. Abdulrahman, J. Pharm. Negat. Results, 13: 685 (2022).
  33. G. A. Vinnacombe‐Willson, Y. Conti, S. J. Jonas, P. S. Weiss, A. Mihi, and L. Scarabelli, Adv. Mater., 34: 2205330 (2022). Crossref
  34. R. B. Abdulrahman, A. S. Alagoz, and T. Karabacak, MRS Proc., 1566: 3 (2013). Crossref
  35. R. Collette, D. A. Garfinkel, Z. Hu, D. J. Masiello, and P. D. Rack, Sci. Rep., 10: 12537 (2020). Crossref
  36. Z. Guo, X. Liu, C. Li, J. Li, H. Cai, M. Fu, D. He, and Y. Wang, Opt. Mater. (Amst.), 119: 111352 (2021). Crossref