Vibration Dynamics of the Ordered Bimetallic Surface Alloy System Pt(110)–(2×1)Cu

N. Laouici$^{1}$, E. Sakher$^{1,2}$, R. Tigrine$^{1,3}$, R. Chadli$^{3}$, S. Bouchareb$^{1}$

$^{1}$Université Ahmed Draia, 6 Nationale Route, 1000 Adrar, Algeria
$^{2}$Environmental Research Centre, Boughazi Saïd Ave., 23000 Annaba, Algeria
$^{3}$Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-Ouzou, B.P. 17 RP, 15000 Tizi-Ouzou, Algeria

Received: 04.12.2023; final version - 25.12.2023. Download: PDF

In the present investigation, we examine systematically the dynamical behaviour of the architecturally complex bimetallic surface alloy, namely, Pt(110)–(2×1)Cu, which is characterized by a half-monolayer (0.5 ML) of copper atoms deposited on a platinum (110) substrate. By leveraging Newtonian mechanics within the harmonic approximation, we construct the dynamic matrix pertinent to the bulk material. The extraction of eigenvalues and eigenvectors is pivotal in formulating a robust theoretical framework, anchored in the Green’s function approach explicitly designed for our model system. Utilizing this sophisticated theoretical model, we are able to elucidate the phonon dispersion relationships traversing the high-symmetry pathways ГY, YS, SX, and XГ of the surface Brillouin zone, as well as deduce the associated local vibrational densities of states. An extensive interpretation of the computational results reveals a notable phenomenon, namely, the electron redistribution between the platinum and copper atoms within the alloy interface, which, in turn, altered the interfacial force constants. This electron redistribution prompts significant divergences in the vibrational density of states at the individual platinum and copper atomic sites at the Cu/Pt(110) juncture, as opposed to the undisturbed Pt(110) surface, suggesting potential pathways for innovative platinum-catalysed surface reactions. Furthermore, our research delineates the variation of several thermodynamic properties as a function of surface composition and thermal parameters, which may offer insights into the stability and reactivity of such bimetallic surfaces.

Key words: alloyed surfaces, phonon surface properties, vibrational density of states, eigenvalue matching techniques, Green’s function methods.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i06/0531.html

DOI: https://doi.org/10.15407/mfint.46.06.0531

PACS: 63.20.D-, 63.20.kp, 63.22.Np, 65.40.Ba, 65.40.gd, 68.65.-k, 81.05.Zx

Citation: N. Laouici, E. Sakher, R. Tigrine, R. Chadli, and S. Bouchareb, Vibration Dynamics of the Ordered Bimetallic Surface Alloy System Pt(110)–(2×1)Cu, Metallofiz. Noveishie Tekhnol., 46, No. 6: 531—547 (2024)


REFERENCES
  1. T. Wei, J. Wang, and D. W. Goodman, J. Phys. Chem. C, 111: 8781 (2007). Crossref
  2. W. Fei, A. Kara, and T. S. Rahman, Phys. Rev. B, 61: 16105 (2000). Crossref
  3. Y. Lu, M. Przybylski, W. H. Wang, L. Yan, Y. Shi, J. Barthel, and J. Kirschner, J. Appl. Phys., 101: 103901 (2007).
  4. I. Wilkinson, R. J. Hughes, Z. Major, S. B. Dugdale, M. A. Alam, E. Bruno, B. Ginatempo, and E. S. Giuliano, Phys. Rev. Lett., 87: 216401 (2001). Crossref
  5. I. Yu. Sklyadneva, G. G. Rusina, and E. V. Chulkov, Phys. Rev. B, 68: 045413 (2003).
  6. M. L. Grant, B. S. Swartzentruber, N. C. Barteltand, and J. B. Hannon, Phys. Rev. Lett., 86: 4588 (2001). Crossref
  7. A. de Siervo, E. A. Soares, R. Landers, and G. G. Kleiman, Phys. Rev. B, 71: 115417 (2005). Crossref
  8. O. Skibbe, K. Berge, G. Meister, and A. Goldmann, Phys. Rev. B, 66: 235418 (2002).
  9. R. Xu, S. Bao, and G. Liu, Surf. Sci., 234, Iss. 3: 335 (1990). Crossref
  10. S. Piccinin, C. Stampfl, and M. Scheffler, Phys. Rev. B, 77: 075426 (2008). Crossref
  11. A. Valcarcel, D. Loffreda, F. Delbecq, and L. Piccolo, Phys. Rev. B, 76: 125406 (2007).
  12. P. Delichère and J. C. Bertolini, Surf. Interface Analysis, 34, Iss. 1: 116 (2002). Crossref
  13. M. Abel, Y. Robach, and L. Porte, Surf. Sci., 498, Iss. 3: 244 (2002). Crossref
  14. S. V. Eremeev, G. G. Rusina, and E. V. Chulkov, Surf. Sci., 601, Iss. 17: 3640 (2007). Crossref
  15. J. Sun, J. B. Hannon, G. L. Kellogg, and K. Pohl, Phys. Rev. B, 76: 205414 (2007). Crossref
  16. L. Li, K. Xun, Y.-M. Zhou, D.-S. Wang, and S.-C. Wu, Phys. Rev. B, 71: 075406 (2005).
  17. N. P. Blanchard, D. S. Martin, A. M. Davarpanah, S. D. Barrett, and P. Weightman, phys. status solidi (a), 188, Iss. 4: 1505 (2001). Crossref
  18. R. A. Bennett, S. Poulston, N. J. Price, J. P. Reilly, P. Stone, C. J. Barnes, and M. Bowker, Surf. Sci., 433-435: 816 (2002). Crossref
  19. P. W. Murray, S. Thorshaug, I. Stensgaard, F. Besenbacher, E. Lægsgaard, A. V. Ruban, K. W. Jacobsen, G. Kopidakis, and H. L. Skriver, Phys. Rev. B, 55, Iss.3: 1380 (1997). Crossref
  20. T. E. Feuchtwang, Phys. Rev., 155: 731 (1967). Crossref
  21. J. Szeftel and A. Khater, J. Phys. C: Solid State Phys., 20: 4725 (1987). Crossref
  22. A. Khater, O. Rafil, Y. Labaye, and Y. Pennec, Solid State Comm., 87, Iss. 1: 53 (1993). Crossref
  23. A. Virlouvet, H. Grimech, A. Khater, Y. Pennec, and K. Maschke, J. Phys.: Cond. Matter, 8: 7589 (1996). Crossref
  24. R. Tigrine, A. Khater, M. Belhadi, and O. Rafil, Surf. Sci., 580, Iss. 1-3: 1 (2005). Crossref
  25. B. Bourahla, A. Khater, and R. Tigrine, Thin Solid Films, 517, Iss. 24: 6857 (2009). Crossref
  26. A. A. Maradudin, R. F. Wallis, and L. Dobrzynski, Handbook of Surfaces and Interfaces (New York: Garland STPM Press: 1980).
  27. H. Grimech and A. Khater, Surf. Sci., 323, Iss. 3: 198 (1995). Crossref
  28. E. A. Wimmer, Nature Biotechnology, 23: 432 (2005). Crossref
  29. E. J. Wu, G. Ceder, and A. van de Walle, Phys. Rev. B, 67: 134103 (2003).
  30. I. Y. Sklyadneva, G. G. Rusina, and E. V. Chulkov, Phys. Rev. B, 68: 045413 (2003).
  31. L. Li, K. Xun, Yu.-M. Zhou, D.-S. Wang, and S.-C. Wu, Phys. Rev. B, 71: 075406 (2005).
  32. A. Khater, R. Tigrine, and B. Bourahla, phys. status solidi (b), 246, Iss. 7: 1614 (2009). Crossref
  33. A. Kara, S. Durukanoglu, and T. S. Rahman, Phys. Rev. B, 53: 15489 (1996). Crossref
  34. S. Iikubo, H. Ohtani, and M. Hasebe, Mater. Trans., 51, Iss. 3: 574 (2010). Crossref
  35. H. L. Yu, G. W. Yang, Y. Xiao, X. H. Yan, Y. L. Mao, Y. R. Yang, and Y. Zhang, Chem. Phys. Lett., 417, Iss. 1-3: 272 (2006). Crossref
  36. I. Atanasov and M. Hou, phys. status solidi (c), 7, Iss. 11-12: 2604 (2010). Crossref
  37. W. Fei, A. Kara, and T. S. Rahman, Phys. Rev. B, 61: 16105 (2000). Crossref
  38. H. Beckmann and G. Bergmann, Phys. Rev. Lett., 85: 1584 (2000). Crossref
  39. N. W. Ashcroft and N. D. Mermin, Physique des Solides (Paris: 2002) (in French). Crossref
  40. H. T. Diep, Physique de la Matière Condensée (Paris: 2003).
  41. C. Ngô and H. Ngô, Physique Statistique (Paris: 2007).
  42. S. Vauclair, Eléments de Physique Statistique (Paris: 1993).
  43. T. S. Rahman, J. D. Spangler, and A. Al-Rawi, J. Phys.: Condens. Matter, 14: 5903 (2002). Crossref
  44. H. Yildirim, A. Kara, and T. S. Rahman, J. Phys.: Condens. Matter, 21: 084220 (2009). Crossref
  45. S. Durukanoğlu, A. Kara, and T. S. Rahman, Phys. Rev. B, 67: 235405 (2003). Crossref
  46. T. S. Chen, G. P. Alldredge, and F. W. De Wette, Surf. Sci., 62, Iss. 2: 675 (1977). Crossref
  47. H. Yildirim, A. Kara, S. Durukanoğlu, and T. S. Rahman, Surf. Sci., 600, Iss. 2: 484 (2006). Crossref
  48. J. Hertz, J. Phys. IV France, 122: 3 (2004). Crossref
  49. L. Dobrzynski and J. Friedel, Surf. Sci., 12, Iss. 3: 469 (1968). Crossref