Correlation between Structural, Morphological and Hydrophobic Properties of MgO Coating of Aluminium Substrate

Zehira Belamri

Phase Transformation Laboratory, Department of Physics, Frères Mentouri of Constantine 1 University, DZ-25000 Constantine, Algeria

Received: 07.02.2024; final version - 11.03.2024. Download: PDF

In this work, we investigate how the molarity of the solution affects the physical characteristics of MgO coatings. By oxidizing simply thermally magnesium that had been electrodeposited on aluminium substrates, stable MgO thin films are produced. The samples are characterized by x-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (FEG-SEM) equipped with energy dispersive x-ray analysis (EDX), a profilometer. The wettability properties of the synthesized films are estimated by measuring the contact angle between the surface of the films and a deposited water drop (WCA). The optimal MgO nanostructure coating crystallizes when magnesium layers are electroplated with 0.2 M of the solution for two hours at 500°C. The MgO-coating crystal orientation is influenced by the molarity of the solution. Data from the XRD analysis are corroborated by Raman-spectroscopy results. Normal vibrational modes, which are compatible with the MgO structure, are visible in the acquired spectra. The study findings suggest that the vibrational mode of the MgO coating described in this work is affected by changing the solution molarity. This form may be responsible for the MgO$_{0.2}$ layer best hydrophobicity, which is caused by air trapping between the nanowires (fibres) to prevent water from clinging to the film.

Key words: MgO coating, aluminium substrate, molarity, electroplating, best hydrophobicity, nanowires.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i06/0549.html

DOI: https://doi.org/10.15407/mfint.46.06.0549

PACS: 68.35.Ja, 68.37.Hk, 68.37.Vj, 68.47.Gh, 78.30.Hv, 81.15.Pq, 82.45.Qr

Citation: Zehira Belamri, Correlation between Structural, Morphological and Hydrophobic Properties of MgO Coating of Aluminium Substrate, Metallofiz. Noveishie Tekhnol., 46, No. 6: 549—557 (2024)


REFERENCES
  1. P. Banerjee, R. Hasda, M. Murmu, and H. Hirani, Anti-Corros Method (Elsevier: 2022).
  2. L. Feng, Y. Che, Y. Liu, Z. Yan, Y. Wang, and X. Qiang, Surf. Interface Anal., 48: 1320 (2016). Crossref
  3. S. Zheng, C. Li, Q. Fu, W. Hu, T. Xiang, Q. Wang, M. Du, X. Liu, and Z. Chen, RSC Adv., 6: 79389 (2016). Crossref
  4. K. Manoharan and S. Bhattacharya, J. Manuf. Process., 2: 59 (2019). Crossref
  5. H. Gau, S. Herminghaus, P. Lenz, and R. Lipowsky, Science, 283: 46 (1999). Crossref
  6. N. Labbortt, J. P. Folkers, and G. M. Whitesides, Science, 257: 1317 (1992).
  7. P. Lenz, Adv. Mater., 11: 1531 (1999). Crossref
  8. S. Abbott, J. Ralston, G. Reynolds, and R. Hayes, Langmuir, 15: 8923 (1999). Crossref
  9. D. Yoo, S. S. Shiratori, and M. F. Rubber, Macromolecules, 31: 4309 (1998). Crossref
  10. L. Jiang, R. Wang, B. Yang, T. J. Li, D. A. Tryk, A. Fujishima, K. Hashimoto, and D. B. Zhu, Pure Appl. Chem., 72: 73 (2009). Crossref
  11. M. H. Hui and M. J. Blunt, J. Phys. Chem. B, 104: 3833 (2000). Crossref
  12. W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, and T. J. McCarthy, Langmuir, 15: 3395 (1999). Crossref
  13. J. P. Youngblood and T. J. McCarthy, Macromolecules, 32: 6800 (1999). Crossref
  14. D. Oner and T. J. McCarthy, Langmuir, 16: 7777 (2000). Crossref
  15. S. Patra, S. Sarkar, S. K. Bera, R. Ghosh, and G. K. Paul, J. Phys. D: Appl. Phys., 42: 075301 (2009). Crossref
  16. Y. Li, M. Zheng, L. Ma, M. Zhong, and W. Shen, Inorg. Chem., 47: 3140 (2008). Crossref
  17. N. Mufti, D. Arista, M. Diantoro, A. Fuad, A. Taufiq, and Sunaryono, IOP Conf. Ser.: Mater. Sci. Eng., 202: 012006 (2017). Crossref
  18. G. Kenanakis, D. Vernardou, and N. Katsarakis, Applied Catalysis A: General, 411-412: 7 (2012). Crossref
  19. Zehira Belamri, W. Darenfad, and N. Guermat, J. Nano-Electron. Phys., 15: 02026 (2023). Crossref
  20. Zehira Belamri, Leila Boumaza, Smail Boudjadar, Phys. Scr., 98: 125949 (2023). Crossref
  21. G. Carta, N. El Habra, L. Crociani, G. Rossetto, P. Zanella, A. Zanella, G. Paolucci, D. Barreca, and E. Tondello, Chem. Vap. Depos., 13: 185 (2007). Crossref
  22. A. M. Ezhil Raj, L. C. Nehru, M. Jayachandran, and C. Sanjeeviraja, Cryst. Res. Technol., 42: 867 (2007). Crossref
  23. S. Visweswaran, R. Venkatachalapathy, M. Haris, and R. Murugesan, J. Mater. Sci. Mater. Electron., 31: 14838 (2020). Crossref
  24. T. Ishiguro, Y. Hiroshima, and T. Inoue, Jpn. J. Appl. Phys., 33: 3537 (1996). Crossref
  25. I. Shih, S. L. Wu, L. Li, C. X. Qiu, P. Grant, and M. W. Denhoff, Mater. Lett., 11: 161 (1991). Crossref
  26. J. Talacchio, G. R. Wagner, and H. C. Pohl, Physica C, 659: 162 (1989). Crossref
  27. Z. Lu, R. S. Feigelson, R. K. Route, S. A. Di Carolis, R. Iliskes, and R. D. Jacowitz, J. Cryst. Growth, 128: 788 (1993). Crossref
  28. X. Yi, W. Wenzhong, Q. Yitai, Y. Li, and C. Zhiwen, Surf. Coat. Technol., 82: 291 (1996). Crossref
  29. Y. Lee, H. Kim, and Y. Roh, Jpn. J. Appl. Phys., 40: 2423 (2001). Crossref
  30. M. Moradi, R. Saidi, B. Hoomehr, and K. Raeissi, Ceram. Int., 49: 9239 (2023). Crossref
  31. F. J. Montes Ruiz-Cabello, P. Ibañez-Ibañez, G. Paz-Gomez, M. Cabrerizo-Vilchez, and M. A. Rodriguez-Valverde, J. Vis. Exp., 138: e57635 (2018).
  32. P. M. Perillo, M. N. Atia, and D. F. Rodríguez, Rev. Mater., 23, No. 2: e-12133 (2018). Crossref
  33. M. F. Malek, M. H. Mamat, M. Z. Sahdan, M. M. Zahidi, Z. Khusaimi, and M. R. Mahmood, Thin Solid Films, 527: 102 (2013). Crossref
  34. G. Kenanakis, E. Stratakis, K. Vlachou, D. Vernardou, E. Koudoumas, and N. Katsarakis, Appl. Surf. Sci., 254: 5695 (2008). Crossref
  35. M. Dekermenjian, A. Peter Ruedige, and A. Merlen, RSC Adv., 13: 26683 (2023). Crossref
  36. S. Visweswaran, R. Venkatachalapathy, M. Haris, and R. Murugesan, J. Mater. Sci. Mater. Electron., 31: 14838 (2020). Crossref
  37. J. P. Singh and L. Gupta, Int. J. Math. Eng. Manag. Sci., 4: 619 (2019). Crossref