Introduction of Crystallographic Factor into the Metal Fatigue Analysis

S. R. Ignatovych$^{1}$, M. V. Karuskevych$^{1}$, T. P. Maslak$^{1}$, O. M. Karuskevych$^{1}$, T. V. Turchak$^{2}$

$^{1}$National Aviation University, 1 Lyubomyr Huzar Ave., UA-03058 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 19.06.2024; final version - 20.08.2024. Download: PDF

The discussed research combine two components: a) the improvement of the current procedure for stress–strain analysis of aircraft parts on the basis of the introduction of a crystallographic factor into the Huber–Mises–Hencky equivalent-stresses’ calculation procedure; b) an example of application of this new calculation procedure into the practice of repairing aircraft skin that has been damaged by shooting, fatigue, corrosion, or firing.

Key words: metal fatigue, crystallography of slip, uniaxial loading, biaxial loading, equivalent stress.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i09/0833.html

DOI: https://doi.org/10.15407/mfint.46.09.0833

PACS: 61.50.Ks, 61.72.Hh, 61.72.Lk, 62.20.L-, 62.20.me, 81.40.Jj, 81.40.Np

Citation: S. R. Ignatovych, M. V. Karuskevych, T. P. Maslak, O. M. Karuskevych, and T. V. Turchak, Introduction of Crystallographic Factor into the Metal Fatigue Analysis, Metallofiz. Noveishie Tekhnol., 46, No. 9: 833—844 (2024)


REFERENCES
  1. A. Niesłony, M. Böhm, and R. Owsiński, ICMFF12 MATEC Web of Conferences, 300: 15007 (2019).
  2. Y.-Y. Wang, and W.-X. Yao, Int. J. Fatigue, 26: 17 (2004).
  3. A. Carpinteri, A. Spagnoli, and S. Vantadori, Fatigue Fract. Eng. Mater. Struct., 40: 1007 (2017).
  4. A. Karolczuk, and E. Macha, Int. J. Fract., 134: 267 (2005).
  5. https://www.diva-portal.org/smash/get/diva2:1576939/FULLTEXT01.pdf Crossref
  6. E. Zasimchuk, T. Turchak, and N. Chausov, Results Mater., 6: 100090 (2020).
  7. E. Zasimchuk, O. Baskova, O. Gatsenko, and T. Turchak, J. Mater. Eng. Perform., 27: 4183 (2018).
  8. Y.-J. Yum, Y.-W. Chu, S.-J. Chu, J.-H. Kim, and H. You, KSME International Journal, 17: 1113 (2003).
  9. Zhenhao Ding, and Ke Wang, J. Phys.: Conf. Ser., 2472: 012020 (2023).
  10. M. Kuppers, and C. M. Sonsino, Fatigue Eng. Mater. Struct., 26: 507 (2003).
  11. https://www.faa.gov/lessons_learned/transport_airplane/accidents/G-ALYVCrossref
  12. https://www.faa.gov/lessons_learned/transport_airplane/accidents/N73711Crossref
  13. J. Hirsch, and T. Al-Samman, Acta Mater., 61, Iss. 3: 818 (2013).
  14. W. F. Hosford, Mechanical Behavior of Materials (Cambridge University Press: 2010), p. 419.
  15. Dayong An, and Stefan Zaefferer, Proceedings of the 5th International Symposium on Steel Science: The Iron and Steel Institute of Japan (Nov. 13–16, 2017) (Kyoto, Japan: 2017), p. 191.
  16. G. Wasserman, and I. Greven, Textures of Metallic. Materials (Moskva: Metallurgiya: 1969) (in Russian).
  17. E. E. Zasimchuk, R. G. Gontareva, M. V. Karuskevich, I. K. Zasimchuk, and Yu. G. Gordienko, Materials Structure & Micromechanics of Fracture. Conference Proceedings. MSMF-3 (Brno, Czech Republic: 2001), p. 232.
  18. M. Karuskevich, O. Karuskevich, T. Maslak, and S. Schepak, Int. J. Fatigue, 39: 116 (2012).
  19. Ł. Pejkowski, M. Karuskevich, and T. Maslak, Fatigue Fract. Eng. Mater. Struct., 42, No. 10: 2315 (2019).
  20. T. Maslak, and M. Karuskevich, Fatigue Fract. Eng. Mater. Struct., 46, No. 3: 1211 (2023).
  21. L. P. Luzhnikova, Materialy v Mashinostroyenii. Tom. 1. Tsvetnyye Metally i Splavy (Moskva: Mashinostroyenie: 1967).