Loading [MathJax]/jax/output/HTML-CSS/jax.js

Introduction of Crystallographic Factor into the Metal Fatigue Analysis

S. R. Ignatovych1, M. V. Karuskevych1, T. P. Maslak1, O. M. Karuskevych1, T. V. Turchak2

1Национальный авиационный университет, просп. Любомира Гузара, 1, 03058 Киев, Украина
2Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина

Получена: 19.06.2024; окончательный вариант - 20.08.2024. Скачать: PDF

The discussed research combine two components: a) the improvement of the current procedure for stress–strain analysis of aircraft parts on the basis of the introduction of a crystallographic factor into the Huber–Mises–Hencky equivalent-stresses’ calculation procedure; b) an example of application of this new calculation procedure into the practice of repairing aircraft skin that has been damaged by shooting, fatigue, corrosion, or firing.

Ключевые слова: metal fatigue, crystallography of slip, uniaxial loading, biaxial loading, equivalent stress.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i09/0833.html

PACS: 61.50.Ks, 61.72.Hh, 61.72.Lk, 62.20.L-, 62.20.me, 81.40.Jj, 81.40.Np


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. A. Niesłony, M. Böhm, and R. Owsiński, ICMFF12 MATEC Web of Conferences, 300: 15007 (2019).
  2. Y.-Y. Wang, and W.-X. Yao, Int. J. Fatigue, 26: 17 (2004).
  3. A. Carpinteri, A. Spagnoli, and S. Vantadori, Fatigue Fract. Eng. Mater. Struct., 40: 1007 (2017).
  4. A. Karolczuk, and E. Macha, Int. J. Fract., 134: 267 (2005).
  5. https://www.diva-portal.org/smash/get/diva2:1576939/FULLTEXT01.pdf Crossref
  6. E. Zasimchuk, T. Turchak, and N. Chausov, Results Mater., 6: 100090 (2020).
  7. E. Zasimchuk, O. Baskova, O. Gatsenko, and T. Turchak, J. Mater. Eng. Perform., 27: 4183 (2018).
  8. Y.-J. Yum, Y.-W. Chu, S.-J. Chu, J.-H. Kim, and H. You, KSME International Journal, 17: 1113 (2003).
  9. Zhenhao Ding, and Ke Wang, J. Phys.: Conf. Ser., 2472: 012020 (2023).
  10. M. Kuppers, and C. M. Sonsino, Fatigue Eng. Mater. Struct., 26: 507 (2003).
  11. https://www.faa.gov/lessons_learned/transport_airplane/accidents/G-ALYVCrossref
  12. https://www.faa.gov/lessons_learned/transport_airplane/accidents/N73711Crossref
  13. J. Hirsch, and T. Al-Samman, Acta Mater., 61, Iss. 3: 818 (2013).
  14. W. F. Hosford, Mechanical Behavior of Materials (Cambridge University Press: 2010), p. 419.
  15. Dayong An, and Stefan Zaefferer, Proceedings of the 5th International Symposium on Steel Science: The Iron and Steel Institute of Japan (Nov. 13–16, 2017) (Kyoto, Japan: 2017), p. 191.
  16. G. Wasserman, and I. Greven, Textures of Metallic. Materials (Moskva: Metallurgiya: 1969) (in Russian).
  17. E. E. Zasimchuk, R. G. Gontareva, M. V. Karuskevich, I. K. Zasimchuk, and Yu. G. Gordienko, Materials Structure & Micromechanics of Fracture. Conference Proceedings. MSMF-3 (Brno, Czech Republic: 2001), p. 232.
  18. M. Karuskevich, O. Karuskevich, T. Maslak, and S. Schepak, Int. J. Fatigue, 39: 116 (2012).
  19. Ł. Pejkowski, M. Karuskevich, and T. Maslak, Fatigue Fract. Eng. Mater. Struct., 42, No. 10: 2315 (2019).
  20. T. Maslak, and M. Karuskevich, Fatigue Fract. Eng. Mater. Struct., 46, No. 3: 1211 (2023).
  21. L. P. Luzhnikova, Materialy v Mashinostroyenii. Tom. 1. Tsvetnyye Metally i Splavy (Moskva: Mashinostroyenie: 1967).