Influence of Electroerosion Cutting and Ultrasonic Surface Modification on the Surface Quality of Heatproof СrNi73MoTiAlNb Nickel Alloy Components
B. M. Mordyuk$^{1}$, V. M. Shyvanyuk$^{1}$, N. I. Khripta$^{1}$, M. A. Skoryk$^{1}$, V. I. Zakiyev$^{2}$, O. V. Podobnyy$^{3}$, Yu. I. Torba$^{3,4}$, M. O. Hryebyennikov$^{3}$, and D. V. Pavlenko$^{3,4}$
$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Aviation University, 1, Lyubomyr Huzar Ave., UA-03058 Kyiv, Ukraine
$^{3}$State Enterprise “Ivchenko-Progress”, 2, Ivanova Str., UA-69068, Zaporizhia, Ukraine
$^{4}$National University Zaporizhzhia Polytechnic, 64, Universitetskaya Str., UA-69063, Zaporizhia, Ukraine
Received: 09.06.2024; final version - 09.07.2024. Download: PDF
The surface state of heatproof specimens of nickel-based СrNi73MoTiAlNb alloy after both wire electroerosion cutting (WEEC) with different applied energies and finishing high-frequency mechanical impact (HFMI) treatment by an ultrasonic tool is analysed. Using an optical interferometry and scanning electron microscopy, the peculiarities of the formed surface topography and roughness are investigated, and using x-ray diffraction analysis and energy dispersive spectroscopy, the structure, chemical and phase compositions of the surface layers are investigated. In the case of the WEEC using brass wire, the surface microalloying is revealed that is not observed, when molybdenum wire is used for WEEC. This effect determines the changes in mechanical properties or their absence, respectively. Instrumented indentation shows that the thermal exposure under WEEC and finishing HFMI modification result in the surface-layers’ hardening, while the microalloying detected under high-energy WEEC leads to a hardness decrease. As established, the HFMI surface modification provides a reduction in the surface-roughness parameters and, accordingly, reduces the probability of the stress concentration on the microrelief and terminates harmful tensile residual stresses.
Key words: nickel-based alloy, wire electric-erosion cutting, surface layer, high-frequency impact treatment, microstructure, surface topography, roughness, hardness, chemical composition.
URL: https://mfint.imp.kiev.ua/en/abstract/v46/i09/0915.html
DOI: https://doi.org/10.15407/mfint.46.09.0915
PACS: 43.35.+d, 62.20.Qp, 68.35.Ct, 68.37.Hk, 68.60.Bs, 81.20.Wk, 81.65.Ps
Citation: B. M. Mordyuk, V. M. Shyvanyuk, N. I. Khripta, M. A. Skoryk, V. I. Zakiyev, O. V. Podobnyy, Yu. I. Torba, M. O. Hryebyennikov, and D. V. Pavlenko, Influence of Electroerosion Cutting and Ultrasonic Surface Modification on the Surface Quality of Heatproof СrNi73MoTiAlNb Nickel Alloy Components, Metallofiz. Noveishie Tekhnol., 46, No. 9: 915—931 (2024) (in Ukrainian)