Influence of Electroerosion Cutting and Ultrasonic Surface Modification on the Surface Quality of Heatproof СrNi73MoTiAlNb Nickel Alloy Components

B. M. Mordyuk$^{1}$, V. M. Shyvanyuk$^{1}$, N. I. Khripta$^{1}$, M. A. Skoryk$^{1}$, V. I. Zakiyev$^{2}$, O. V. Podobnyy$^{3}$, Yu. I. Torba$^{3,4}$, M. O. Hryebyennikov$^{3}$, and D. V. Pavlenko$^{3,4}$

$^{1}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{2}$Национальный авиационный университет, просп. Любомира Гузара, 1, 03058 Киев, Украина
$^{3}$ГП «Ивченко-Прогресс», ул. Иванова, 2, 69068 Запорожье, Украина
$^{4}$Национальный Университет "Запорожская политехника", ул. Жуковського, 64, 69063 Запорожье, Украина

Получена: 09.06.2024; окончательный вариант - 09.07.2024. Скачать: PDF

The surface state of heatproof specimens of nickel-based СrNi73MoTiAlNb alloy after both wire electroerosion cutting (WEEC) with different applied energies and finishing high-frequency mechanical impact (HFMI) treatment by an ultrasonic tool is analysed. Using an optical interferometry and scanning electron microscopy, the peculiarities of the formed surface topography and roughness are investigated, and using x-ray diffraction analysis and energy dispersive spectroscopy, the structure, chemical and phase compositions of the surface layers are investigated. In the case of the WEEC using brass wire, the surface microalloying is revealed that is not observed, when molybdenum wire is used for WEEC. This effect determines the changes in mechanical properties or their absence, respectively. Instrumented indentation shows that the thermal exposure under WEEC and finishing HFMI modification result in the surface-layers’ hardening, while the microalloying detected under high-energy WEEC leads to a hardness decrease. As established, the HFMI surface modification provides a reduction in the surface-roughness parameters and, accordingly, reduces the probability of the stress concentration on the microrelief and terminates harmful tensile residual stresses.

Ключевые слова: nickel-based alloy, wire electric-erosion cutting, surface layer, high-frequency impact treatment, microstructure, surface topography, roughness, hardness, chemical composition.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i09/0915.html

PACS: 43.35.+d, 62.20.Qp, 68.35.Ct, 68.37.Hk, 68.60.Bs, 81.20.Wk, 81.65.Ps


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. M. Shabgard, S. Farzaneh, and A. Gholipoor, J. Braz. Soc. Mech. Sci. Eng., 39: 857 (2017).
  2. I. V. Manoj, R. Joy, and S. Narendranath, Arab. J. Sci. Eng., 45: 641 (2020).
  3. F. Klocke, D. Welling, A. Klink, D. Veselovac, T. Nöthe, and R. Perez, Proc. CIRP, 14: 430 (2014).
  4. D. Welling, Proc. CIRP, 13: 339 (2014).
  5. L. Li, Y. B. Guo, X. T. Wei, and W. Li, Proc. CIRP, 6: 220 (2013).
  6. P. Bleys, J.-P. Kruth, B. Lauwers, B. Schacht, V. Balasubramanian, L. Froyen, and J. van Humbeeck, Adv. Eng. Mater., 8: 15 (2006).
  7. M. A. Vasylyev, B. N. Mordyuk, V. P. Bevz, S. M. Voloshko, and O. B. Mordiuk, Int. J. Surf. Sci. Eng., 14, No. 1: 1 (2020).
  8. A. S. Gill and S. Kumar, Int. J. Adv. Manuf. Technol., 78: 1585 (2015).
  9. B. N. Mordyuk, G. I. Prokopenko, K. E. Grinkevych, N. A. Piskun, and T. V. Popova, Surf. Coat. Technol., 309: 969 (2017).
  10. B. N. Mordyuk, V. V. Silberschmidt, G. I. Prokopenko, Y. V. Nesterenko, and M. O. Iefimov, Mater. Characterization, 61: 1126 (2010).
  11. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Surf. Eng., 34, No. 4: 324 (2018).
  12. V. V. Mohylko, A. P. Burmak, S. M. Voloshko, S. I. Sydorenko, and B. M. Mordyuk, Metallofiz. Noveishie Tekhnol., 44, No. 2: 223 (2022) (in Ukrainian).
  13. D. K. Aspinwall, S. L. Soo, A. E. Berrisford, and G. Walder, Ann. CIRP, 57: 187 (2008).
  14. B. N. Mordyuk and G. I. Prokopenko, Handbook of Mechanical Nanostructuring (Ed. M. Aliofkhazraei) (Wiley: 2015), ch. 17, p. 417.
  15. H. I. Prokopenko, B. M. Mordyuk, M. O. Vasyl’yev, and S. M. Voloshko, Fizychni Osnovy Ul’trazvukovoho Udarnoho Zmitsnennya Metalevykh Poverkhon’ [Physical Principles for Ultrasonic Impact Hardening of Metallic Surfaces] (Kyiv: Naukova Dumka: 2017) (in Ukrainian).
  16. M. A. Vasil’ev, B. N. Mordyuk, D. V. Pavlenko, and L. F. Yatsenko, Metallofiz. Noveishie Tekhnol., 37, No. 1: 121 (2015) (in Russian).
  17. D. A. Lesyk, S. Martinez, O. O. Pedash, B. N. Mordyuk, V. V. Dzhemelinskyi, and A. Lamikiz, J. Mater. Eng. Perform., 31: 6283 (2022).
  18. S. P. Chenakin, B. N. Mordyuk, and N. I. Khripta, Vacuum, 210: 111889 (2023).
  19. D. A. Lesyk, S. Martinez, B. N. Mordyuk, O. O. Pedash, V. V. Dzhemelinskyi, and A. Lamikiz, Additive Manuf. Let., 3: 100063 (2022).
  20. D. Pavlenko, Y. Dvirnyk, and R. Przysowa, Aerospace, 8, No. 1: 1 (2021).
  21. D. Pavlenko, E. Kondratyuk, Y. Torba, E. Vyshnepolskyi, and D. Stepanov, Eastern-European J. Enterprise Technol., 1, No. 12: 31 (2022).
  22. D. Lesyk, S. Martinez, B. Mordyuk, V. Dzhemelinskyi, and A. Lamikiz, Advanced Manufacturing Processes (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, M. Edl, I. Kuric, I. Pavlenko, and P. Dasic) (Springer: 2020), p. 186.
  23. L. Ropyak, T. Shihab, A. Velychkovych, V. Bilinskyi, V. Malinin, and M. Romaniv, Ceramics, 6: 146 (2023).
  24. Y. Chabak, V. Efremenko, V. Zurnadzhy, V. Puchý, I. Petryshynets, B. Efremenko, V. Fedun, K. Shimizu, I. Bogomol, V. Kulyk, and D. Jakubéczyová, Metals, 12, Iss. 2: 218 (2022).
  25. https://www.splav-kharkov.com/choose_type_class.php?type_id=14.
  26. N. I. Khripta, B. M. Mordyuk, V. Yu. Malinin, M. A. Skoryk, V. I. Zakiyev, O. V. Podobnyy, Yu. I. Torba, M. O. Hryebyennikov, and D. V. Pavlenko, Abstr. IV Int. Conf. ‘Functional Materials for Innovative Energetics FMIE–2023’ (Sept. 21–23, 2023, Kyiv), p. 47 (in Ukrainian).
  27. V. Zakiev, A. Markovsky, E. Aznakayev, I. Zakiev, and E. Gursky, Proc. SPIE, 5959: 595916 (2005).
  28. I. Zakiev, G. A. Gogotsi, M. Storchak, and V. Zakiev, Surfaces, 3, Iss. 2: 211 (2020).
  29. I. Zakiev, M. Storchak, G. A. Gogotsi, V. Zakiev, and Y. Kokoieva, Ceramics Int., 47, Iss. 21: 29638 (2021).
  30. M. Storchak, I. Zakiev, V. Zakiev, A. Manokhin, Measurement, 191: 110745 (2022).
  31. M. O. Vasyl’yev, B. M. Mordyuk, S. M. Voloshko, V. I. Zakiyev, A. P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1499 (2019) (in Ukrainian).
  32. V. I. Kyryliv, V. I. Zakiev, and O. V. Maksymiv, Mater. Sci., 58: 795 (2023).
  33. O. I. Zaporozhets, V. A. Mykhailovskyi, A. A. Halkina, O. V. Podobnyi, Yu. I. Torba, and D. V. Pavlenko, Abstr. IV Int. Conf. ‘Functional Materials for Innovative Energetics FMIE–2023’ (Sept. 21–23, 2023) (Kyiv: 2023), p. 14.