Influence of Grain Size on Shape Memory and Internal Friction in Cu69.26Al25.86Mn4.88 Alloy

Yu. M. Koval$^{1}$, V. V. Odnosum$^{1}$, Vyach. M. Slipchenko$^{1}$, V. S. Filatova$^{1}$, A. S. Filatov$^{1}$, O. A. Shcheretskyi$^{2}$, and G. S. Firstov$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Physico-Technological Institute of Metals and Alloys, N.A.S. of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 09.09.2024; final version - 30.09.2024. Download: PDF

Shape-memory alloys belong to the functional materials, which exhibit shape memory, superelasticity and high damping-capacity phenomena. Cu–Al–Mn shape-memory alloys remain of particular interest as they show good machinability and are much cheaper than nitinol. In addition, their functional performance is quite attractive as well. The present paper is dedicated to the changes in shape memory and internal friction induced by the grain-size reduction in low-temperature cast Cu69.26Al25.86Mn4.88 alloy.

Key words: martensitic transformation, grain size, shape memory, internal friction, Cu–Al–Mn alloys.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i09/0933.html

DOI: https://doi.org/10.15407/mfint.46.09.0933

PACS: 61.72.Dd, 61.72.Hh, 62.20.fg, 62.40.+i, 65.40.De, 81.30.Kf, 81.40.Jj

Citation: Yu. M. Koval, V. V. Odnosum, Vyach. M. Slipchenko, V. S. Filatova, A. S. Filatov, O. A. Shcheretskyi, and G. S. Firstov, Influence of Grain Size on Shape Memory and Internal Friction in Cu69.26Al25.86Mn4.88 Alloy, Metallofiz. Noveishie Tekhnol., 46, No. 9: 933—941 (2024)


REFERENCES
  1. G. V. Kurdyumov and L. G. Khandros, Doklady AN SSSR, 66: 211 (1949).
  2. H. Warlimont and L. Delaey, Martensitic Transformations in Copper-, Silver- and Gold-Based Alloys (Oxford: Pergamon Press: 1974); H. Warlimont and L. Delaey, Prog. Mater. Sci., 18: 1 (1974).
  3. T. Tadaki, Shape Memory Materials (Eds. K. Otsuka and C. M. Wayman) (Cambridge: Cambridge University Press: 1998), p. 97.
  4. E. M. Mazzer, M. R. da Silva, and P. Gargarella, J. Mater. Research, 37: 162 (2022).
  5. R. Kainuma, S. Takahashi, and K. Ishida, J. Phys. IV France, 05, No. C8: C8-961 (1995).
  6. R. Kainuma, S. Takahashi, and K. Ishida, Metall. Mater. Trans. A, 27: 2187 (1996).
  7. J. Van Humbeeck, L. Delaey, E. Hornbogen, and N. Jost, The Martensitic Transformation in Science and Technology (Oberursel: DGM Informationsgesellschaft: 1989), p. 15.
  8. N. Koeda, T. Omori, Y. Sutou, H. Suzuki, M. Wakita, R. Kainuma, and K. Ishida, Mater. Trans., 46: 118 (2005).
  9. Y. Sutou, R. Kainuma, and K. Ishida, Mater. Sci. Eng. A, 273–275: 375 (1999).
  10. Y. Sutou, T. Omori, R. Kainuma, and K. Ishida, Mater. Sci. Technol., 24, Iss. 8: 896 (2008).
  11. https://luttero.github.io/maud
  12. M. Suezawa and K. Sumino, Scripta Metall., 10, Iss. 9: 789 (1976).
  13. Jan Van Humbeeck, Johannes Stoiber, Luc Delaey, and Rolf Gotthardt, Int. J. Mater. Research, 86: Iss. 3, 176 (1995).