Influence of Grain Size on Shape Memory and Internal Friction in Cu69.26Al25.86Mn4.88 Alloy

Yu. M. Koval$^{1}$, V. V. Odnosum$^{1}$, Vyach. M. Slipchenko$^{1}$, V. S. Filatova$^{1}$, A. S. Filatov$^{1}$, O. A. Shcheretskyi$^{2}$, and G. S. Firstov$^{1}$

$^{1}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{2}$Физико-технологический институт металлов и сплавов НАН Украины, бульв. Академика Вернадского, 34/1, 03142 Киев, Украина

Получена: 09.09.2024; окончательный вариант - 30.09.2024. Скачать: PDF

Shape-memory alloys belong to the functional materials, which exhibit shape memory, superelasticity and high damping-capacity phenomena. Cu–Al–Mn shape-memory alloys remain of particular interest as they show good machinability and are much cheaper than nitinol. In addition, their functional performance is quite attractive as well. The present paper is dedicated to the changes in shape memory and internal friction induced by the grain-size reduction in low-temperature cast Cu69.26Al25.86Mn4.88 alloy.

Ключевые слова: martensitic transformation, grain size, shape memory, internal friction, Cu–Al–Mn alloys.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i09/0933.html

PACS: 61.72.Dd, 61.72.Hh, 62.20.fg, 62.40.+i, 65.40.De, 81.30.Kf, 81.40.Jj


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. G. V. Kurdyumov and L. G. Khandros, Doklady AN SSSR, 66: 211 (1949).
  2. H. Warlimont and L. Delaey, Martensitic Transformations in Copper-, Silver- and Gold-Based Alloys (Oxford: Pergamon Press: 1974); H. Warlimont and L. Delaey, Prog. Mater. Sci., 18: 1 (1974).
  3. T. Tadaki, Shape Memory Materials (Eds. K. Otsuka and C. M. Wayman) (Cambridge: Cambridge University Press: 1998), p. 97.
  4. E. M. Mazzer, M. R. da Silva, and P. Gargarella, J. Mater. Research, 37: 162 (2022).
  5. R. Kainuma, S. Takahashi, and K. Ishida, J. Phys. IV France, 05, No. C8: C8-961 (1995).
  6. R. Kainuma, S. Takahashi, and K. Ishida, Metall. Mater. Trans. A, 27: 2187 (1996).
  7. J. Van Humbeeck, L. Delaey, E. Hornbogen, and N. Jost, The Martensitic Transformation in Science and Technology (Oberursel: DGM Informationsgesellschaft: 1989), p. 15.
  8. N. Koeda, T. Omori, Y. Sutou, H. Suzuki, M. Wakita, R. Kainuma, and K. Ishida, Mater. Trans., 46: 118 (2005).
  9. Y. Sutou, R. Kainuma, and K. Ishida, Mater. Sci. Eng. A, 273–275: 375 (1999).
  10. Y. Sutou, T. Omori, R. Kainuma, and K. Ishida, Mater. Sci. Technol., 24, Iss. 8: 896 (2008).
  11. https://luttero.github.io/maud
  12. M. Suezawa and K. Sumino, Scripta Metall., 10, Iss. 9: 789 (1976).
  13. Jan Van Humbeeck, Johannes Stoiber, Luc Delaey, and Rolf Gotthardt, Int. J. Mater. Research, 86: Iss. 3, 176 (1995).