Use of Diffraction Effects in the X-Ray Fluorescence Analysis for Determination of Carbon Concentration in Steels

P. P. Vysots’kyy$^{1,2}$, H. Y. Monastyrs’kyy$^{1}$, O. H. Druzheruchenko$^{2}$

$^{1}$Institute of Physics and Technology, National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Beresteiska Ave., UA-03056 Kyiv, Ukraine
$^{2}$‘Elvatech’ LTD, 50 Mashynobudivna Str., UA-03067 Kyiv, Ukraine

Received: 26.06.2024; final version - 28.09.2024. Download: PDF

The possibility of adapting the X-ray fluorescence analysis to determine the carbon content in steels is considered. The proposed method is based on the comparative analysis intensity of diffraction peaks in fluorescence spectra. The optimal geometry of the spectrum recording is determined experimentally, and it is established that in the case of unalloyed steel, this technique provides an adequate estimation of the carbon content in the sample. The restrictions and obstacles for the accurate carbon content determination in alloying steels is discussed.

Key words: x-ray fluorescence analysis, carbon steel, diffraction.

URL: https://mfint.imp.kiev.ua/en/abstract/v46/i10/0943.html

DOI: https://doi.org/10.15407/mfint.46.10.0943

PACS: 82.80.Ej, 78.70.Ck, 78.70.En, 87.64.Gb, 07.85.Nc

Citation: P. P. Vysots’kyy, H. Y. Monastyrs’kyy, and O. H. Druzheruchenko, Use of Diffraction Effects in the X-Ray Fluorescence Analysis for Determination of Carbon Concentration in Steels, Metallofiz. Noveishie Tekhnol., 46, No. 10: 943—952 (2024)


REFERENCES
  1. A. El-Sesy and Z. M. El-Baradie, Mater. Lett., 57, No. 3: 585 (2002).
  2. A. Migliori, P. Bonanni, L. Carraresi, N. Grassi, and P. A. Mandò, X-Ray Spectrom., 40, No. 2: 112 (2011).
  3. J. Shao, R. Li, Q. Pan, and L. Cheng, Spectrochim. Acta, Part B, 196: 106518 (2022).
  4. M. J. Q. Hernandez, J. A. Pero-Sanz, and L. Verdeja, Solidification and Solid-State Transformations of Metals and Alloys (Elsevier: 2017).
  5. K. Momma and F. Izumi, J. Appl. Crystallogr., 44, No. 6: 1276 (2011).
  6. I. Harding, I. Mouton, B. Gault, D. Raabe, and K. S. Kumar, Scr. Mater., 172: 42 (2019).
  7. B. Denand, V. A. Esin, M. Dehmas, G. Geandier, S. Denis, T. Sourmail, and E. Aeby-Gautier, Materialia, 10: 100664 (2020).
  8. A. V. Khvan, B. Hallstedt, and C. Broeckmann, Calphad, 46: 33 (2014).
  9. D. Djurovic, B. Hallstedt, J. Von Appen, and R. Dronskowski, Calphad, 35, No. 4: 491 (2011).
  10. N. Fujita and H. K. D. H. Bhadeshia, Mater. Sci. Technol., 15, No. 6: 627 (1999).
  11. M. Kawalec, Arch. Metall. Mater., 59, No. 3: 1054 (2014).
  12. C.-C. Hsieh, Y.-C. Liu, J.-S. Wang, and W. Wu, Met. Mater. Int., 20, No. 4: 712 (2014).
  13. T. Suzuki, S. Teramoto, and Y. Neishi, ISIJ Int., 64, No. 2: 276 (2024).
  14. A. Kroupa, J. Havránková, M. Svoboda, M. Coufalová, and J. Vřešt’ál, J. Phase Equilib., 22, No. 3: 323 (2001).