Use of Diffraction Effects in the X-Ray Fluorescence Analysis for Determination of Carbon Concentration in Steels

P. P. Vysots’kyy$^{1,2}$, H. Y. Monastyrs’kyy$^{1}$, O. H. Druzheruchenko$^{2}$

$^{1}$Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», просп. Берестейский, 37, 03056 Киев, Украина
$^{2}$ТОВ "ЕЛВАТЕХ", ул. Машиностроительная, 50, 03067 Киев, Украина

Получена: 26.06.2024; окончательный вариант - 28.09.2024. Скачать: PDF

The possibility of adapting the X-ray fluorescence analysis to determine the carbon content in steels is considered. The proposed method is based on the comparative analysis intensity of diffraction peaks in fluorescence spectra. The optimal geometry of the spectrum recording is determined experimentally, and it is established that in the case of unalloyed steel, this technique provides an adequate estimation of the carbon content in the sample. The restrictions and obstacles for the accurate carbon content determination in alloying steels is discussed.

Ключевые слова: X-ray fluorescence analysis, carbon steel, diffraction.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i10/0943.html

PACS: 82.80.Ej, 78.70.Ck, 78.70.En, 87.64.Gb, 07.85.Nc


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. A. El-Sesy and Z. M. El-Baradie, Mater. Lett., 57, No. 3: 585 (2002).
  2. A. Migliori, P. Bonanni, L. Carraresi, N. Grassi, and P. A. Mandò, X-Ray Spectrom., 40, No. 2: 112 (2011).
  3. J. Shao, R. Li, Q. Pan, and L. Cheng, Spectrochim. Acta, Part B, 196: 106518 (2022).
  4. M. J. Q. Hernandez, J. A. Pero-Sanz, and L. Verdeja, Solidification and Solid-State Transformations of Metals and Alloys (Elsevier: 2017).
  5. K. Momma and F. Izumi, J. Appl. Crystallogr., 44, No. 6: 1276 (2011).
  6. I. Harding, I. Mouton, B. Gault, D. Raabe, and K. S. Kumar, Scr. Mater., 172: 42 (2019).
  7. B. Denand, V. A. Esin, M. Dehmas, G. Geandier, S. Denis, T. Sourmail, and E. Aeby-Gautier, Materialia, 10: 100664 (2020).
  8. A. V. Khvan, B. Hallstedt, and C. Broeckmann, Calphad, 46: 33 (2014).
  9. D. Djurovic, B. Hallstedt, J. Von Appen, and R. Dronskowski, Calphad, 35, No. 4: 491 (2011).
  10. N. Fujita and H. K. D. H. Bhadeshia, Mater. Sci. Technol., 15, No. 6: 627 (1999).
  11. M. Kawalec, Arch. Metall. Mater., 59, No. 3: 1054 (2014).
  12. C.-C. Hsieh, Y.-C. Liu, J.-S. Wang, and W. Wu, Met. Mater. Int., 20, No. 4: 712 (2014).
  13. T. Suzuki, S. Teramoto, and Y. Neishi, ISIJ Int., 64, No. 2: 276 (2024).
  14. A. Kroupa, J. Havránková, M. Svoboda, M. Coufalová, and J. Vřešt’ál, J. Phase Equilib., 22, No. 3: 323 (2001).