Band Structure of Aluminium Nitride and Its Solid Solutions with Magnesium and Oxygen

V. M. Uvarov, M. P. Mel’nyk,  Yu. V. Kudryavtsev , M. V. Uvarov, E. M. Rudenko, M. V. Nemoshkalenko

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 27.09.2024; final version - 14.11.2024. Download: PDF

Using the band-structure calculations within the FLAPW (the full-potential linearized augmented-plane-wave) method, information about the energy band structure E(k) of aluminium nitride and its solid solutions with oxygen and magnesium is obtained. As established, the energy band structure of these solutions indicates their metallic state.

Key words: band-structure calculations, electronic structure, aluminium nitride, solid solutions.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i01/0001.html

DOI: https://doi.org/10.15407/mfint.47.01.0001

PACS: 71.15.Ap, 71.15.Mb, 71.20.-b, 72.15.Eb, 81.05.Bx, 81.05.Ea, 81.05.Zx

Citation: V. M. Uvarov, M. P. Mel’nyk,  Yu. V. Kudryavtsev , M. V. Uvarov, E. M. Rudenko, and M. V. Nemoshkalenko, Band Structure of Aluminium Nitride and Its Solid Solutions with Magnesium and Oxygen, Metallofiz. Noveishie Tekhnol., 47, No. 1: 1-7 (2025) (in Ukrainian)


REFERENCES
  1. A. W. Weimer, G. A. Cochran, G. A. Eisman, J. P. Henley, B. D. Hook, L. K. Mills, T. A. Guiton, A. K. Knudsen, N. R. Nicholas, J. E. Volmering, and W. G. Moore, J. Am. Ceram. Soc., 77, Iss. 1: 3 (1994).
  2. A. V. Virkar, T. B. Jackson, and R. A. Cutler, J. Am. Ceram. Soc., 72: 2031 (1989).
  3. T. J. Mroz Jr., Ceram. Bull., 71: 782 (1992).
  4. P. T. B. Shaffer and T. J. Mroz Jr., Aluminum Nitride (Advanced Refractory Technology: 1991).
  5. A. Glen, R. A. Slack, R. Tanzilli, O. Pohl, and J. W. Vandersande, J. Phys. Chem. Solids, 48: 141 (1987).
  6. O. Ye. Pogorelov, O. V. Filatov, E. M. Rudenko, I. V. Korotash, and M. V. Dyakin, Progress in Physics of Metals, 24, No. 2: 239 (2023).
  7. E. M. Rudenko, A. A. Krakovnyi, M. V. Dyakin, I. V. Korotash, D. Yu. Polotskiy, and M. A. Skoryk, Metallofiz. Noveishie Tekhnol., 44, No. 8: 989 (2022) (in Ukrainian).
  8. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B, 10: 1237 (1992).
  9. W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, J. Appl. Phys., 44: 292 (1973).
  10. B. Hejda, phys. status solidi (b), 32, Iss. 1: 407 (1969).
  11. S. Bloom, J. Phys. Chem. Solids, 32: 2027 (1971).
  12. D. Jones and A. H. Lettington, Solid State Commun., 11: 701 (1972).
  13. W. Y. Ching and B. N. Harmon, Phys. Rev. B, 34: 5305 (1986).
  14. A. Kobayashi, O. Sankey, S. M. Yolz, and J. D. Dow, Phys. Rev. B, 28: 935 (1983).
  15. V. M. Uvarov, E. M. Rudenko, Yu. V. Kudryavtsev, M. V. Uvarov, I. V. Korotash, and M. V. Dyakin, Metallofiz. Noveishie Tekhnol., 46, No. 3: 199 (2024).
  16. C. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B, 46: 10086 (1992).
  17. D. Singh, Plane Waves, Pseudopotentials and LAPW Method (Kluwer Academic: 1994).
  18. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996).
  19. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, and L. D. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Wien: Techn. Universität: 2001).