Investigations on the Microstructure Evolution of Submicrocrystalline Metals Obtained by the Severe Plastic Deformation Method: a Review

B. S. Abdrasilov, B. B. Makhmutov

Karaganda Industrial University, 30 Republic Ave., KZ-101400 Temirtau, Republic of Kazakhstan

Received: 30.01.2024; final version - 08.07.2024. Download: PDF

Currently, submicrocrystalline (SMC) metals and alloys obtained using severe plastic deformation (SPD) techniques are of increasing interest to researchers. In the present work, we focus on the study of materials with a disorientation spectrum dominated by large-angle grain boundaries, i.e., not microfragmented, but nano- and micrograin materials—SMC materials in our terminology. The fundamental importance of the dominance of the high-angle grain boundaries (HAGBs) in the spectrum of grain-boundary disorientations is due to the exceptional role they play in the formation of the unique properties of SMC materials. As it will be shown in this paper, a special property of the HAGBs (in contrast to low-angle grain boundaries) is their ability to transition to a nonequilibrium state during SPD and to maintain this state for a certain time after deformation, which is the cause of many, if not all, special physical and mechanical properties of SMC materials.

Key words: severe plastic deformation, nanostructure, fragmentation, ultrafine-grained structure.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i01/0083.html

DOI: https://doi.org/10.15407/mfint.47.01.0083

PACS: 46.35.+z, 61.72.Ff, 61.72.Mm, 62.20.fq, 81.20.Hy, 81.20.Wk, 83.50.Uv

Citation: B. S. Abdrasilov and B. B. Makhmutov, Investigations on the Microstructure Evolution of Submicrocrystalline Metals Obtained by the Severe Plastic Deformation Method: a Review, Metallofiz. Noveishie Tekhnol., 47, No. 1: 83—102 (2025)


REFERENCES
  1. D. Setman, E. Schafler, E. Korznikova, and M. J. Zehetbauer, Mater. Sci. Eng. A, 493: 116 (2008).
  2. W. Q. Cao, C. F. Gu, E. V. Pereloma, and C. H. J. Davies, Mater. Sci. Eng. A, 492: 74 (2008).
  3. A. Volokitin, A. Naizabekov, I. Volokitina, and A. Kolesnikov, J. Chem. Technol. Metall., 57, Iss. 4: 809 (2022).
  4. I. E. Volokitina, Met. Sci. Heat Treat., 63, Nos. 3-4: 163 (2021).
  5. A. B. Naizabekov, S. N. Lezhnev, and I. E. Volokitina, Met. Sci. Heat Treat., 57, Nos. 5-6: 254 (2015).
  6. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I. Volokitina, Phys. Scr., 94, No. 10: 105702 (2019).
  7. I. E. Volokitina and A. V. Volokitin, Metallurgist, 67: 232 (2023).
  8. I. Volokitina, A. Bychkov, A. Volokitin, and A. Kolesnikov, Metallogr., Microstruct., Anal., 12: 564 (2023).
  9. S. Lezhnev, I. Volokitina, and T. Koinov, J. Chem. Technol. Metall., 49, Iss. 6: 621 (2014).
  10. I. Volokitina, J. Chem. Technol. Metall., 55, Iss. 2: 479 (2020).
  11. A. Naizabekov, S. Lezhnev, E. Panin, A. Arbuz, T. Koinov, and I. Mazur, J. Mater. Eng. Perform., 28: 200 (2019).
  12. B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies in Construction Materials, 18: e02162 (2023).
  13. R. Z. Valiev and I. V. Alexandrov, Nanostrukturirovannyye Materialy, Poluchennyye Metodom Intensivnoy Plasticheskoy Deformatsii [Nanostructured Materials Obtained by Severe Plastic Deformation] (Moskva: Logos: 2000) (in Russian).
  14. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, Fiz. Met. Metalloved., 76, No. 4: 70 (1992) (in Russian).
  15. K. Y. Mulyokov, G. F. Korznikova, R. Z. Abdulov, and R. Z. Valiev, J. Magn. Magn. Mater., 89: 207 (1990).
  16. M. Latypova, V. Chigirinsky, and A. Kolesnikov, Prog. Phys. Met., 24, No. 1: 132 (2023).
  17. N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Materials, 15: 3975 (2022).
  18. I. E. Volokitina, Met. Sci. Heat Treat., 62: 253 (2020).
  19. I. E. Volokitina, A. V. Volokitin, and E. A. Panin, Prog. Phys. Met., 23, No. 4: 684 (2022).
  20. A. Naizabekov, A. Volokitin, and E. Panin, J. Mater. Eng. Perform., 28: 1762 (2019).
  21. I. Volokitina, A. Volokitin, A. Denissova, Y. Kuatbay, and Y. Liseitsev, Case Studies in Construction Materials, 19: e02346 (2023).
  22. V. V. Chigirinsky and Y. S. Kresanov, Metallofiz. Noveishie Tekhnol., 45, No. 4: 467 (2023).
  23. E. Panin, Z. Gelmanova, and Y. Liseitsev, Case Studies in Construction Materials, 19: e02609 (2023).
  24. N. Zhangabay, I. Baidilla, A. Tagybayev, Y. Anarbayev, and P. Kozlov, Case Studies in Construction Materials, 18: e02161 (2023).
  25. A. Nayzabekov and I. Volokitina, Phys. Met. Metallogr., 120: 177 (2019).
  26. N. M. Amirkhanov, R. K. Islamgaliev, and R. Z. Valiev, Phys. Met. Metallogr., 86: 296 (1998).
  27. M. Goto, S. Z. Han, T. Yakushiji, S. S. Kim, and C. Y. Lim, Int. J. Fatigue, 30: 1333 (2008).
  28. M. F. Ashby, C. Gandli, and D. M. R. Taplin, Acta Metall., 27: 699 (1979).
  29. I.E. Volokitina, Prog. Phys. Met., 24, No. 3: 593 (2023).
  30. I. Volokitina, A. Volokitin, and D. Kuis, J. Chem. Technol. Metall., 56: 643 (2021).
  31. I. E. Volokitina and G. G. Kurapov, Met. Sci. Heat Treat., 59, Nos. 11-12: 786 (2018).
  32. S. Lezhnev, E. Panin, and I. Volokitina, Adv. Mat. Res., 814: 68 (2013).
  33. S. Lezhnev, A. Naizabekov, E. Panin, and I. Volokitina, Procedia Eng., 81: 1499 (2014).
  34. T. G. Nieh, D. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics (Cambridge: Cambridge Univ. Press: 1997).
  35. V. N. Perevezentsev, V. V. Rybin, and V. N. Chuvil’deev, Acta Metall. Mater., 40: 887 (1992).
  36. R. K. Islamgaliev, N. F. Yunusova, R. Z. Valiev, N. K. Tsenev, V. N. Perevezentsev, and T. G. Langdon, Scr. Mater., 49, Iss. 5: 467 (2003).
  37. R. K. Islamgaliev, N. F. Yunusova, and R. Z. Valiev, Nanostructures Materials by High-Pressure Revere Plastic Deformation (Springer: 2006), p. 299-304.
  38. S. H. Kang, Y. S. Lee, and J. H. Lee, J. Mater. Process. Technol., 201: 436 (2008).
  39. A. V. Sergueeva, N. A. Mara, R. Z. Valiev, and A. K. Mukherjee, Mater. Sci. Eng. A, 410-411: 413 (2005).
  40. R. Z. Valiev and I. V. Aleksandrov, Doklady Physics, 46: 633 (2001).
  41. A. Yamashita, Z. Horita, and T. G. Langdon, Mater. Sci. Eng. A, 300: 142 (2001).
  42. H. K. Kim and W. J. Kim, Mater. Sci. Eng. A, 385: 300 (2004).
  43. Y. Wang, M. Chen, F. Zhou, and E. Ma, Nature, 419: 912 (2002).
  44. A. P. Zhilyaev, A. A. Gimazov, E. P. Soshnikova, A. Rezesz, and T. G. Langdon, Mater. Sci. Eng. A, 489: 207 (2008).
  45. E. Shafler and R. Pippan, Mater. Sci. Eng. A, 387-389: 799 (2004).
  46. H. Conrad and K. Jung, Scr. Mater., 53: 581 (2005).
  47. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci., 51: 427 (2006).
  48. V. M. Segal, Mater. Sci. Eng. A, 197: 157 (1995).
  49. V. Y. Gertsman, R. Birringer, R. Z. Valiev, and H. Gleiter, Scr. Met. Mat., 30: 229 (1994).
  50. A. Goloborodko, O. Sitdikov, R. Kaibyshev, H. Miura, and T. Sakai, Mater. Sci. Eng. A, 381: 121 (2004).
  51. Y. C. Chen, Y. Y. Huang, C. P. Chang, and P. W. Kao, Acta Mater., 51: 2005 (2003).
  52. W. H. Huang, C. Y. Yu, P. W. Kao, and C. P. Chang, Mater. Sci. Eng. A, 356: 321 (2004).
  53. D. H. Shin, J. J. Pak, Y. K. Kim, K. T. Park, and Y. S. Kim, Mater. Sci. Eng. A, 325: 31 (2002).
  54. S. Lezhnev and A. Naizabekov, J. Chem. Technol. Metall., 52, No. 4: 626 (2017).
  55. G. I. Raab, E. P. Soshnikova, and R. Z. Valiev, Mater. Sci. Eng. A, 387-389: 674 (2004).
  56. V. M. Segal, I. J. Beyerlein, C. N. Tome, V. N. Chuvil’deev, and V. I. Kopylov, Fundamentals and Engineering of Severe Plastic Deformation (New York: Nova Science Publishers: 2010).
  57. V. N. Perevezentsev and G. F. Sarafanov, Rev. Adv. Mater. Sci., 30: 73 (2012).
  58. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, Acta Mater., 52: 3793 (2004).
  59. A. Volokitin, I. Volokitina, and E. Panin, Metallogr., Microstruct., Anal., 11, No. 4: 673 (2022).
  60. S. Lezhnev, A. Naizabekov, I. Volokitina, and A. Volokitin, Procedia Eng., 81: 1505 (2014).
  61. I. E. Volokitina, Met. Sci. Heat Treat., 61: 234 (2019).
  62. S. N. Lezhnev, I. E. Volokitina, and A. V. Volokitin, Phys. Met. Metallogr., 118, No. 11: 1167 (2017).
  63. I. Volokitina, J. Chem. Technol. Metall., 57: 631 (2022).
  64. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, Prog. Mater. Sci., 60: 13 (2014).
  65. S. Gourdet and F. Montheillet, Mat. Sci. Eng., 283, Iss. 1-2: 274 (2000).
  66. A. Galiyev, R. Kaibyshev, and G. Gottstein, Acta Mater., 49, Iss. 7: 1199 (2001).
  67. Y. Huang and F.J. Humphreys, Acta Mater., 47, Iss. 7: 2259 (1999).
  68. A. Belyakov, K. Tsuzaki, H. Miura, and T. Sakai, Acta Mater., 51, Iss. 3: 847 (2003).
  69. O. Sitdikov, T. Sakai, A. Goloborodko, H. Miura, and R. Kaibyshev, Philos. Mag., 85, No. 11: 1159 (2005).
  70. W. Liu, D. Juul Jensen, and J. J. Morris, Acta Mater., 49: 3347 (2001).
  71. K. Huang and R. E. Loge, Mater. Des., 111: 548 (2016).
  72. A. Belyakov, T. Sakai, H. Miura, and K. Tsuzaki, Philos. Mag. A, 81: 2629 (2001).
  73. S. White, Proc. R. Soc. A, 283: 69 (1976).
  74. S. E. Ion, F. J. Humphreys, and S. H. White, Acta Metall., 30: 1909 (1982).
  75. L. S. Tóth, Y. Estrin, R. Lapovok, and C. Gu, Acta Mater., 58, Iss. 5: 1782 (2010).
  76. A. Belyakov, Y. Kimura, Y. Adachi, and K. Tsuzak, Mater. Trans., 45, Iss. 9: 2812 (2004).
  77. T. Sakai, A. Belyakov, and H. Miura, Metall. Mater. Trans. A, 39: 2206 (2008).
  78. A. Gholinia, F. Humphreys, and P. Prangnell, Acta Mater., 50, Iss. 18: 4461 (2002).
  79. I. E. Volokitina and A. V. Volokitin, Phys. Met. Metallogr., 119: 917 (2018).
  80. G. Kurapov, E. Orlova, I. Volokitina, and A. Turdaliev, J. Chem. Technol. Metall., 51: 451 (2016).
  81. A. V. Volokitin, I. E. Volokitina, and E. A. Panin, Prog. Phys. Met., 23, Iss. 3: 411 (2022).
  82. L. E. Murr, C. S. Niou, J. C. Sanchez, and L. Zernow, Scripta Met. et Mat., 32: 31 (1995).
  83. H. J. McQueen, O. Knustad, N. Ryum, and J. K. Solberg, Scr. Metall., 19: 73 (1985).
  84. G. A. Henshall, M. E. Kassner, and H. J. McQueen, Metall. Mater. Trans. A, 23: 881 (1992).
  85. F. J. Humphreys, P. B. Prangnell, J. R. Bowen, A. Gholinia, and C. Harris, Philos. Trans. R. Soc. A, 357, Iss. 1756: 1663 (1999).
  86. M. E. Kassner and S. R. Barrabes, Mater. Sci. Eng. A, 410: 152 (2010).