The Effect of Heat Treatment on the Physical and Mechanical Properties, and Grindability of the Amorphous Fe73Si16B7Cu1Nb3 Alloy Ribbon

B. S. Baitaliuk, V. K. Nosenko, I. K. Yevlash

G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 30.07.2024; final version - 01.08.2024. Download: PDF

The effect of heat treatment on the physical and mechanical properties and grindability of amorphous Fe73Si16B7Cu1Nb3 (of FINEMET-type) alloy ribbon is investigated. A non-monotonic dependence of microhardness, brittleness, and electrical resistivity on the annealing temperature is established. As shown, the optimum temperature, which provides the best grindability of the ribbon, is of 450°C, which is lower than the nanocrystallization temperature of this amorphous alloy. The morphology, size, and fractional composition of the grinded powder are studied using scanning electron microscopy.

Key words: FINEMET, amorphous ribbon, nanocrystalline structure, heat treatment, powder.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i03/0287.html

DOI: https://doi.org/10.15407/mfint.47.03.0287

PACS: 62.20.Qp, 62.25.Mn, 75.50.Kj, 81.20.Ev, 81.40.Ef, 81.40.Lm, 81.40.Rs

Citation: B. S. Baitaliuk, V. K. Nosenko, and I. K. Yevlash, The Effect of Heat Treatment on the Physical and Mechanical Properties, and Grindability of the Amorphous Fe73Si16B7Cu1Nb3 Alloy Ribbon, Metallofiz. Noveishie Tekhnol., 47, No. 3: 287—301 (2025)


REFERENCES
  1. O. Gutfleisch, M. Willard, E. Brück, C. Chen, S. Sankar, and J. P. Liu, Adv. Mater., 23, Iss. 7: 821 (2011).
  2. A. M. Leary, P. R. Ohodnicki, and M. E. McHenry, JOM, 64: 772 (2012).
  3. S. Wu, W. Hu, Q. Ze, M. Sitti, and R. Zhao, Multifunctional Mater., 3, No. 4: 042003 (2020).
  4. A. Talaat, M. V. Suraj, K. Byerly, A. Wang, Y. Wang, J. K. Lee, and P. R. Ohodnicki, J. Alloys Compd., 870: 159500 (2021).
  5. T. N. Lamichhane, L. Sethuraman, A. Dalagan, H. Wang, J. Keller, and M. P. Paranthaman, Mater. Today Phys., 15: 100255 (2020).
  6. Q. Lu, K. Choi, J.-D. Nam, and H. J. Choi, Polymers, 13, Iss. 4: 512 (2021).
  7. J. M. Silveyra, E. Ferrara, D. L. Huber, and T. C. Monson, Science, 362: eaao0195 (2018).
  8. Interdisciplinary Engineering Sciences Concepts, Researches and Applications (Ed. S. Islak) (Lyon: 2022).
  9. B. S. Baitalyuk, V. A. Maslyuk, S. B. Kotlyar, and Ya. A. Sytnyk, Powder Metall. Met. Ceram., 55: 496 (2016).
  10. J. L. Ni, F. Duan, S. J. Feng, F. Hu, X. C. Kan, and X. S. Liu, J. Alloys Compd., 897: 163191 (2022).
  11. G. E. Fish, Proc. IEEE, 78, No. 6: 947 (1990).
  12. W. Li, Y. Zheng, Y. Kang, A. Masood, Y. Ying, J. Yu, J. Zheng, L. Qiao, J. Li, and S. Che, J. Alloys Compd., 819: 153028 (2020).
  13. G. Ouyang, X. Chen, Y. Liang, C. Macziewski, and J. Cui, J. Magn. Magn. Mater., 481: 234 (2019).
  14. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (John Wiley and Sons: 2011).
  15. F. Fiorillo, Characterization and Measurement of Magnetic Materials (Academic Press: 2004).
  16. Z. Y. Wu, Z. Jiang, X. A. Fan, L. J. Zhou, W. L. Wang, and K. Xu, J. Alloys Compd., 742: 90 (2018).
  17. Z. Zheng, S. Li, and K. Peng, J. Magn. Magn. Mater., 568: 170423 (2023).
  18. D. Azuma, N. Ito, and M. Ohta, J. Magn. Magn. Mater., 501: 166373 (2019).
  19. R. Hasegawa, J. Magn. Magn. Mater., 324: 3555 (2012).
  20. S. Lu, M. Wang, and Z. Zhao, J. Non-Cryst. Solids, 616: 122440 (2023).
  21. X. Wang, Z. Lu, C. Lu, G. Li, and D. Li, J. Iron Steel Res. Int., 21: 1055 (2014).
  22. C. Chang, J. Guo, Q. Li, S. Zhou, M. Liu, and Y. Dong, J. Alloys Compd., 788: 1177 (2019).
  23. R. Ma and P. Yu, Mater. Res. Bull., 139: 111256 (2021).
  24. H. Shokrollahi and K. Janghorban, J. Mater. Process. Technol., 189, Iss. 1–3: 1 (2007).
  25. A. Krings, A. Boglietti, A. Cavagnino, and S. Sprague, IEEE Trans. Ind. Electron., 64, Iss. 3: 2405 (2017).
  26. K. L. Alvarez, H. A. Baghbaderani, J. M. Martín, N. Burgos, M. Ipatov, Z. Pavlovic, and J. Gonzalez, J. Magn. Magn. Mater., 501: 166457 (2020).
  27. Y. Yoshizawa, S. Fujii, D. H. Ping, M. Ohnuma, and K. Hono, Scr. Mater., 48, Iss. 7: 863 (2003).
  28. Handbook of Magnetic Materials. Vol. 10 (Ed. K. H. J. Buschow) (Elsevier: 1997).
  29. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys., 64: 6044 (1988).
  30. M. Manivel Raja, N. Ponpandian, B. Majumdar, A. Narayanasamy, and K. Chattopadhyay, Mater. Sci. Eng. A, 304–306: 1062 (2001).
  31. G. Herzer, Acta Mater., 61, Iss. 3: 718 (2013).
  32. H. Sun, C. Wang, J. Wang, M. Yu, and Z. Guo, J. Magn. Magn. Mater., 502: 166548 (2020).
  33. Z. Guo, J. Wang, W. Chen, D. Chen, H. Sun, Z. Xue, and C. Wang, Mater. Des., 192: 108769 (2020).
  34. T. Zhou, Y. Liu, R. Wang, J. Ye, J. Li, W. Zhao, and V. G. Harris, J. Alloys Compd., 791: 1138 (2019).
  35. C. Wu, H. Chen, H. Lv, and M. Yan, J. Alloys Compd., 673: 278 (2016).
  36. H. Chen, J. Xu, C. Wang, R. Fu, Z. Fu, Q. Chen, and X. Liu, Ceram. Int., 50, Iss. 19, Pt. A: 35746 (2024).
  37. H. Wei, H. Yu, Y. Feng, Y. Wang, J. He, and Z. Liu, Mater. Chem. Phys., 263: 124427 (2021).
  38. X. Li, Y. Dong, X. Liu, S. Wu, R. Zhao, H. Wu, W. Gao, A. He, J. Li, and X. Wang, Mater. Sci. Eng. B, 285: 115965 (2022).
  39. B. Wang, Z. Zhang, J. Shen, Y. Tian, B. Wang, L. Cai, L. Liu, Y. Yu, and G. Wang, J. Alloys Compd., 972: 172812 (2024).
  40. K. J. Sunday and M. L. Taheri, Metal Powder Rep., 72, Iss. 6: 425 (2017).
  41. H. G. Rutz, F. G. Hanejko, and G. W. Ellis, PM2TEC ‘97: Powder Metallurgy and Particulate Materials (June 29–July 2, 1997) (Chicago: 1997).
  42. W. Lu, B. Yan, and R. Tang, J. Alloys Compd., 425: 406 (2006).
  43. P. Wang, Z. Zhu, J. Liu, H. Wang, J. Pang, and J. Zhang, J. Magn. Magn. Mater., 596: 171985 (2024).
  44. E. Périgo, B. Weidenfeller, P. Kollár, and J. Füzer, Appl. Phys. Rev., 5: 031301 (2018).
  45. M. Liu, K. Huang, L. Liu, T. Li, P. Cai, Y. Dong, and X.-M. Wang, J. Mater. Sci. Mater. Electron., 29: 6092 (2018).
  46. I. Otsuka, K. Wada, Y. Maeta, T. Kadomura, and M. Yagi, IEEE Trans. Magn., 44, Iss. 11: 3891 (2008).
  47. L. Zhang, Y. Wu, Y. Dong, X. Jia, A. He, J. Li, W. Wang, and B. Shen, J. Mater. Sci., 59: 8784 (2024).
  48. V. A. Maslyuk, B. S. Baitalyuk, and V. K. Nosenko, Naukovi Notatky. Inzhenerna Mekhanika, 25, No. 2: 150 (2009) (in Ukrainian).
  49. P. Gramatyka, R. Nowosielski, P. Sakiewicz, and T. Raszka, J. Achiev. Mater. Manuf. Eng., 150, Nos. 1–2: 27 (2006).
  50. P. Gramatyka and R. Nowosielski, Advances in Nanostructured Materials, Processing–Microstructure–Properties NANOVED 2006–NENAMAT (May 14–17, 2006) (Bratislava: Slovak Academy of Sciences: 2006), p. 81.
  51. F. Mazaleyrat and L. Varga, J. Magn. Magn. Mater., 215–216: 253 (2000).
  52. B. Zhou, M. Lv, J. Wu, B. Ya, L. Meng, L. Jianglin, and X. Zhang, Mater., 15: 2558 (2022).
  53. R. M. Aranda, R. Astacio, P. Urban, B. Aranda, and F. G. Cuevas, Powder Technol., 441: 119816 (2024).
  54. Melta www.melta.com.ua.
  55. H. Watanabe, Powder Technol., 104, Iss. 1: 95 (1999).
  56. A. M. Glezer and N. A. Shurygina, Amorfno-Nanokristallicheskie Splavy [Amorphous-Nanocrystalline Alloys] (Moskva: Fizmatlit: 2013) (in Russian).
  57. V. V. Maslov, V. K. Nosenko, L. E. Taranenko, and A. P. Brovko, Fiz. Met. Metalloved., 91, No. 5: 47 (2001) (in Russian).
  58. V. V. Nemoshkalenko, L. E. Vlasenko, A. V. Romanova, V. V. Maslov, V. K. Nosenko, and A. P. Brovko, Metallofiz. Noveishie Tekhnol., 20, No. 6: 22 (1998).
  59. S. P. Hozhii, Osnovy Fizyko-Tekhnichnykh ta Khimiko-Termychnykh Protsesiv dlya Pidvyshchennya Resursu Vyrobiv Mashynobuduvannya [Basics of Physico-Technical and Chemical-Thermal Processes for Increasing the Resource of Mechanical Engineering Products] (Kyiv: National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’: 2022) (in Ukrainian).
  60. J. Zhou, J. You, and Q. Keqiang, J. Appl. Phys., 132: 040702 (2022).
  61. C. Minnert, M. Kuhnt, S. Bruns, A. Marshal, K. G. Pradeep, M. Marsilius, E. Bruder, and K. Durst, Mater. Des., 156: 252 (2018).
  62. V. K. Nosenko, Visnyk Natsionalnoi Akademii Nauk Ukrainy, 4: 68 (2015) (in Ukrainian).
  63. M. P. Semenko, M. I. Zakharenko, Yu. A. Kunytskyi, V. A. Makara, and A. P. Shpak, Usp. Fiz. Met., 10: 131 (2009) (in Ukrainian).