On the Possibility to Manufacture Inconel-718 Alloy Products with Metal Injection Moulding Approach: Microstructure-Evolution Features and Main Characteristics

O. M. Ivasishin$^{1}$, D. G. Savvakin$^{1}$, O. D. Rud$^{1}$, D. V. Oryshych$^{1}$, I. M. Kirian$^{1}$, A. M. Lakhnik$^{1}$, V. I. Bondarchuk$^{1}$, B. Kronowetter$^{2}$, Yu. I. Torba$^{3}$, V. G. Manzhos$^{3}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$KRONOWETTER Kunststoff- und Metalltechnik GmbH, Gewerbestrasse 32, Mitterfelden, D-83404 Germany
$^{3}$“Ivchenko-Progress” State Enterprise”, 2 Ivanova Str., UA-69068 Zaporizhzhia, Ukraine

Received: 02.04.2025; final version - 03.04.2025. Download: PDF

The main features of manufacturing the Inconel-718 alloy products using mixture of Inconel-718 powder and an organic binder are studied. Using die-compacted and sintered feedstock, evolutions of microstructure and characteristics are studied during debinding, powder sintering and heat-treatment processing stages of metal injection moulding (MIM) manufacturing technique. The conditions and parameters ensuring formation of suitable microstructure and promising mechanical characteristics of final Inconel-718 material are determined. Nearly dense sintered material is formed on sintering, while post-sintering heat treatment ensures achievement of desirable phase composition. Hardness of 364 HV, tensile strength of about 900 MPa, and up to 17% elongation are achieved; such characteristics are promising to recommend MIM approach for manufacturing net-shape Inconel-718 alloy products.

Key words: metal injection moulding (MIM), Inconel-718, powder, binder, sintering, heat treatment, microstructure, mechanical properties.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i04/0391.html

DOI: https://doi.org/10.15407/mfint.47.04.0391

PACS: 61.43.Gt, 61.72.Ff, 81.05.Bx, 81.20.Ev, 81.20.Hy, 81.40.Jj, 81.70.Jb

Citation: O. M. Ivasishin, D. G. Savvakin, O. D. Rud, D. V. Oryshych, I. M. Kirian, A. M. Lakhnik, V. I. Bondarchuk, B. Kronowetter, Yu. I. Torba, and V. G. Manzhos, On the Possibility to Manufacture Inconel-718 Alloy Products with Metal Injection Moulding Approach: Microstructure-Evolution Features and Main Characteristics, Metallofiz. Noveishie Tekhnol., 47, No. 4: 391—404 (2025)


REFERENCES
  1. A. Enes and A. Gürsel, Period. Eng. Nat. Sci., 3, No. 1: 15 (2015).
  2. R. J. Smith, G. J. Lewi, and D. H. Yates, Aircraft Engineering and Aerospace Technology, 73, No. 2: 138 (2001).
  3. W. M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, and V. Hansen, Mater. Sci. Eng. A, 689: 220 (2017).
  4. R. Cozar and A. Pineau, Metall. Trans., 4: 47 (1973).
  5. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Metall. Trans. A, 23: 2015 (1992).
  6. R.M. German, Handbook of Metal Injection Molding, 1 – Metal Powder Injection Molding (MIM): Key Trends and Markets (Ed. Donald F. Heaney) (Woodhead Publishing: 2012).
  7. F. T. Teferi and A. A. Tsegaw, Advances of Science and Technology. ICAST 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Vol. 412 (Cham: Springer: 2022).
  8. I. P. Widiantara, R. A. Kurnia Putri, D. I. Han, W. Bahanan, E. H. Lee, Ch. H. Woo, J.-H. Kang, J. Ryu, and Y. G. Ko, Materials, 16, No. 6: 2516 (2023).
  9. G. H. Gessinger and M. J. Bomford, Int. Met. Rev., 19, No. 1: 51 (1974).
  10. www.polymim.com
  11. https://www.upmet.com/sites/default/files/datasheets/718.pdf
  12. A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A. K. Koul, Materials and Design, 52: 791 (2013).
  13. M. Dehmas, J. Lacaze, N. Niang, and B. Viguier, Adv. Mater. Sci. Eng., 2011, No. 3: 1 (2011).
  14. C.-M. Kuo, Y.-T. Yang, H.-Y. Bor, C.-N. Wei, and C.-C. Tai, Mater. Sci. Eng. A, 510–511: 289 (2009).
  15. S. Ghosh, S. Yadav, G. Das, Mater. Lett., 62: 2619 (2008).
  16. D. K. Gorai and T. K. Kundu, IOP Conf. Series: Mater. Sci. Eng., 338: 012041 (2018).