Surface Properties of High-Strength Cast Iron Parts with Wear-Resistant Composite Coatings Synthesized by Electrospark Alloying Method. Pt. 2. Investigation of the Structure and Microhardness of the Treated Cast-Iron Surfaces

V. B. Tarelnyk$^{1}$, O. P. Haponova$^{2,3}$, N. V. Tarelnyk$^{1}$, M. Yu. Dumanchuk$^{1}$, M. M. Maifat$^{1}$, M. A. Mikulina$^{1}$, V. M. Kozin$^{1}$

$^{1}$Sumy National Agrarian University, 160 Gerasima Kondratyeva St., UA-40021 Sumi, Ukraine
$^{2}$Sumy State University, 116 Kharkivska St., UA-40007 Sumi, Ukraine
$^{3}$Institute for Fundamental Technological Research of the Polish Academy of Sciences, 5B Pawińskiego St., 02-016 Warsaw, Poland

Received: 25.01.2024; final version - 27.06.2024. Download: PDF

The article discloses the method and the results of the metallographic studies and investigation of distribution of the coating elements along the depth of the layers of the high-strength ВЧ50 (VCh50) cast-iron samples, which have been coated by the electrospark alloying (ESA) method with the use of the compact electrode-tools (ETs) having a composition of (90%ВК6 (VK6)+10%1М) and 1М, while the ETs having been manufactured by powder metallurgy (PM) sintering method, as well as applying special technological saturating media (STSM). The metallographic studies have established that the structure of the surface layer consists of three areas, namely, the ‘white’ and transition layers having the thicknesses of 15–75 and 10–20 microns, respectively, and the base metal. The durometric studies have established that the microhardnesses of the ‘white’ layer and the transition zone are within the ranges 6200–13360 and 4290–4900 MPa, respectively. While deepening, the microhardness value is gradually decreasing from the maximum one on the surface of the coating. The highest microhardness values of 13260 and 12800 MPa were obtained, when using the compact electrode-tools made of hard alloy ВК6 (VK6) and the nichrome wire of Х20Н80 (Kh20N80), respectively, and applying the STNS of 0.5%Si+0.5%B+2%Cr+7%Ni+90% petroleum jelly and 5%Si+5%B+90% petroleum jelly, respectively. At the same time, the thickness values of their layers of increased hardness achieve 50 and 90 microns, respectively. The studies of the surface topography have shown that the surface layers of all the samples consist of three characteristic areas, namely, a smooth surface, a rough surface, and a pore. The micro-cracks and pores having sizes up to 1 μm and 1–3 μm, respectively, may sometimes be seen on the sample after the ESA process with the use of the electrodes made of the material of 90%ВК6 (VK6)+10%1M by the PM method. The x-ray spectral analysis has shown that the surface layers of all the samples consist of the base elements and alloying material at all the characteristic points.

Key words: electrospark alloying, electrode-tool, metallographic analysis, x-ray spectral analysis, surface layer, coating, structure, microhardness, cracks, pores, continuity.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i07/0717.html

DOI: https://doi.org/10.15407/mfint.47.07.0717

PACS: 62.20.Qp, 68.35.Ct, 68.35.Gy, 68.55.J-, 68.55.Ln, 81.15.Rs, 81.40.Pq

Citation: V. B. Tarelnyk, O. P. Haponova, N. V. Tarelnyk, M. Yu. Dumanchuk, M. M. Maifat, M. A. Mikulina, and V. M. Kozin, Surface Properties of High-Strength Cast Iron Parts with Wear-Resistant Composite Coatings Synthesized by Electrospark Alloying Method. Pt. 2. Investigation of the Structure and Microhardness of the Treated Cast-Iron Surfaces, Metallofiz. Noveishie Tekhnol., 47, No. 7: 717-736 (2025) (in Ukrainian)


REFERENCES
  1. V. B. Tarelnyk, O. P. Gaponova, N. V. Tarelnyk, M. Y. Dumanchuk, M. M. Maifat, and V. A. Gerasimenko, Metallofiz. Noveishie Tekhnol., 47, No. 4: 427 (2025) (in Ukrainian).
  2. Yu. S. Samotugina, B. A. Lyashenko, and O. О. Bezumova, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1105 (2021) (in Ukrainian).
  3. O. P. Shylina, Visnyk Mashynobuduvannia ta Transportu, 2:115 (2017) (in Ukrainian).
  4. T. A. Hurei, Vestnyk KhNADU, 74: 48 (2016) (in Russian).
  5. T. S. Skoblo, O. I. Sidashenko, and O. V. Saichuk, Korpusni Detali z Chavuniv ta Yikh Yakisni Pokaznyky: Monohrafiya [Cast Iron Body Parts and Their Quality Indicators: Monograph] (Kharkiv: Disa Plius: 2019).
  6. T. S. Skoblo, O. Yu. Marchenko, and I. M. Rybalko, Metodyka Otsinky Stupenyu Degradatsiyi Metaliv Vyrobiv u Protsesi Ekspluatatsiyi [Method for Assessing the Degree of Metal Degradation of Products During Operation], Patent 95287 UA (publ. 25.06.15., Bull. No. 12) (in Ukrainian).
  7. T. S. Skoblo, S. H. Kartashov, and N. S. Hrankina, Visnyk Kharkivs’kogo Natsional’nogo Tekhnichnogo Universytetu Sils’kogo Hospodarstva im. P. Vasylenka, 122: 143 (2012) (in Ukrainian).
  8. O. I. Sidashenko, T. S. Skoblo, O. V. Tikhonov, A. K. Avtukhov, O. V. Saychuk, V. A. Bantkovsky, O. D. Martynenko, I. G. Sherzhukov, and O. O. Goncharenko, Tekhnolohichni Systemy Remontnoho Vyrobnytstva. Ch. 3. Proektuvannya Resursozberihayuchykh Tekhnolohichnykh Protsesiv Remontu Mashyn [Technological Systems of Repair Production. Pt. 3. Design of Resource-Saving Technological Processes for Machine Repair] (Kharkiv: KhNTUSG: 2012).
  9. T. S. Skoblo, A. K. Avtukhov, O. I. Sidashenko, O. Iu. Klochko, Yu. L. Belkin, and R. H. Sokolov, Sposib Vyrobnytstva Prokatnykh Valkiv [Method of Manufacturing Rolling Rolls], Patent 105761UA (opubl. 11.04.2016) (in Ukrainian).
  10. T. S. Skoblo and V. M. Vlasovets, Materials Science, 47, No. 5:644 (2012).
  11. I. P. Shatskyi, V. V. Perepichka, and L. Ya. Ropyak, Metallofiz. Noveishie Tekhnol., 42, No. 1: 69 (2020) (in Ukrainian).
  12. M. S. Storozhenko, A. P. Umanskii, A. E. Terentiev, and I. M. Zakiev, Powder Metallurgy and Metal Ceramics, 56, Nos. 1–2: 60 (2017).
  13. O. Umanskyi, M. Storozhenko, G. Baglyuk, O. Melnyk, V. Brazhevsky, O. Chernyshov, O. Terentiev, Yu. Gubin, O. Kostenko, and I. Martsenyuk, Powder Metallurgy and Metal Ceramics, 59, Nos. 7–8: 434 (2020).
  14. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, and L. Ropyak, Materials, 15, No. 14: 5074 (2022).
  15. B. O. Trembach, M. G. Sukov, V. A. Vynar, I. O. Trembach, V. V. Subbotina, O. Yu. Rebrov, O. M. Rebrova, and V. I. Zakiev, Metallofiz. Noveishie Tekhnol., 44, No. 4: 493 (2022).
  16. L. Ropyak, I. Schuliar, and O. Bohachenko, Eastern-European Journal of Enterprise Technologies, 1, Iss. 5: 53 (2016) (in Ukrainian).
  17. I. Ivasenko, V. Posuvailo, H. Veselivska, and V. Vynar, International Scientific and Technical Conference on Computer Sciences and Information Technologies (2020), vol. 2, p. 9321900.
  18. M. Bembenek, M. Makoviichuk, I. Shatskyi, L. Ropyak, I. Pritula, L. Gryn, and V. Belyakovskyi, Sensors, 22, Iss. 21: 8105 (2022).
  19. М. М. Student, V. M. Dovhunyk, V. M. Posuvailo, I. V. Koval’chuk, and V. M. Hvozdets’kyi, Materials Science, 53, Iss. 3: 359 (2017).
  20. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, Iss. 1: 83 (2022).
  21. T. S. Skoblo, A. A.Goncharenko, N. V. Firsova, and A. N. Legkobyt, Materialy Nauchno-Prakticheskoy Konferentsii Studentov i Magistrantov BGATU [Proc. of the Scientific and Practical Conference of Students and Masters of BGATU] (2019) [in Russian].
  22. A. V. Karakurkchi, Functional Materials, 22, Iss. 2: 181 (2015).
  23. V. A. Tatarenko and T. M. Radchenko, Uspehi Fiziki Metallov, 3, Iss. 2: 111 (2002) (in Ukrainian).
  24. A. D. Pogrebnjak, A. A. Bagdasaryan, P. Horodek, V. Tarelnyk, V. V. Buranich, H. Amekura, N. Okubo, N. Ishikawa, and V.M. Beresnev, Materials Letters, 303: 130548 (2021).
  25. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplyanchenko, N. S. Yevtushenko, and V. O. Herasymenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018) (in Russian).
  26. O. Gaponova, Cz. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Estimating Qualitative Parameters of Aluminized Coating Obtained by Electric Spark Alloying Method (Eds. A. D. Pogrebnjak and V. Novosad). Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering (Singapore: Springer: 2019).
  27. O. P. Gaponova, B. Antoszewski, V. B. Tarelnyk, P. Kurp, O. M. Myslyvchenko, and N. V. Tarelnyk, Materials, 14: 6332 (2021).
  28. N. V. Tarelnyk, Metallofiz. Noveishie Tekhnol., 44, No. 8: 1037 (2022) (in Ukrainian).
  29. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplyanchenko, N. S. Yevtushenko, and V. O. Herasymenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018) (in Ukrainian).
  30. V. B. Tarelnyk, O. P. Gaponova, G. V. Kirik, N. V. Tarelnyk, and M. O. Mikulina, Metallofiz. Noveishie Tekhnol., 42, No. 5: 655 (2020) (in Ukrainian).
  31. O. P. Gaponova, V. B. Tarelnyk, V. S. Martsynkovskyy, G. V. Kirik, and A. B. Batalova, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1121 (2021) (in Ukrainian).
  32. O. P. Gaponova, V. B. Tarelnyk, V. S. Martsynkovskyy, Y. I. Semirnenko, and O. V. Ryasnaya, Metallofiz. Noveishie Tekhnol., 43, No. 9: 1155 (2021) (in Ukrainian).
  33. V. B. Tarelnyk, I. V. Konoplianchenko, O. P. Gaponova, O. A. Sarzhanov, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 58, Nos. 11–12: 703 (2020).
  34. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 148 (2012).
  35. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 157 (2012).
  36. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplianchenko, N. V.Tarelnyk, and O. O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 2: 173 (2019) (in Ukrainian).
  37. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplianchenko, V. S. Martsynkovskyy, N. V. Tarelnyk, and O. O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 3: 313 (2019) (in Ukrainian).
  38. V. B. Tarelnyk, O. P. Gaponova, Ie. V. Konoplianchenko, N. V. Tarelnyk, M. Y. Dumanchuk, M. O. Mikulina, V. O. Pirogov, S. O. Gorovoy, and N. K. Medvedchuk, Metallofiz. Noveishie Tekhnol., 44, No. 11: 1475 (2022) (in Ukrainian).
  39. V. Tarelnyk, I. Konoplianchenko, N. Tarelnyk, and A. Kozachenko, Materials Science Forum, 968: 131 (2019).
  40. B. Antoszewski, O. P. Gaponova, V. B. Tarelnyk, O. M. Myslyvchenko, P. Kurp, T. I. Zhylenko, and I. Konoplianchenko, Materials, 14: 739 (2021).
  41. V. Martsynkovskyy, V. Tarelnyk, V. Martsynkovskyy, P. Furmańczyk, and N. Tarelnyk, AIP Conference Proceedings, 2017, No. 1: 020017 (2018).
  42. V. Tarelnvk, A. Kozachenko, V. Martsynkovskyy, C. Kundera, and O. Gaponova, Proc. of the 2018 IEEE 8th International Conference on Nanomaterials: Applications and Properties–NAP 2018, p. 8915077.
  43. V. B. Tarelnyk, O. P. Gaponova, V. B. Loboda, M. A. Mikulina, and B. A. Sarzhanov, Surface Engineering and Applied Electrochemistry, 57, No. 2: 173 (2021).
  44. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, B. Sarzhanov, and A. Polyvanyi, Proc. of the 2022 IEEE 12th International Conference “Nanomaterials: Applications and Properties”–NAP 2022.
  45. V.Tarelnyk, O. Gaponova, V. Martsynkovskyy, T. Voloshko, and O. Semernya, Proc. of the 2020 IEEE 10th International Conference “Nanomaterials: Applications and Properties”–NAP 2020, p. 9309618.
  46. O. M. Myslyvchenko, O. P. Gaponova, V. B. Tarelnyk, and M. O. Krapivka, Powder Metallurgy and Metal Ceramics, 59, Nos. 3–4: 201 (2020).
  47. O. P. Gaponova, V. B. Tarelnyk, B. Antoszewski, O. M. Myslyvchenko, and J. Hoffman, Materials, 15, No. 17: 6085 (2022).
  48. O. V. Ivankova, O. V. Garashchuk, V. I. Kutsenko, V. V. Shcherbyna, D. V. Chizhevsky, Ya. V. Babych, and M. O. Tikhonov, Visnyk PDAA, 4: 283 (2020) (in Ukrainian).
  49. M. M. Student, V. M. Hvozdetskyi, T. R. Stupnytskyi, and Y. V. Dzioba, Science and Innovation, 13, No. 6: 34 (2017).
  50. V. M. Gvozdecki, Visnyk Natsional’noi Akademii Nauk Ukrainy, 3: 79 (2018) (in Ukrainian).
  51. B. A. Lyashenko, Ye. K. Solovykh, and V. I. Mirnenko, Optimizatsiya Tekhnologii Naneseniya Pokrytiy po Kriteriyam Prochnosti i Iznosostoykosti [Optimization of Coating Application Technology According to Durability and Wear Resistance Criteria] (Kyiv: IPP NAN: 2010) (in Russian).
  52. T. S. Skoblo, N. N. Rybalko, A. V. Tykhonov, and A. D. Martynenko, Tekhnichnyy Servis Ahropromyslovoho, Lisovoho ta Transportnoho Kompleksiv, 15: 60 (2019) (in Ukrainian).
  53. B. Carcel, J. Sampedro, A. Ruescas, and X. Toneu, Physics Procedia, 12: 353 (2011).
  54. A. Guzanova, M. Džupon, D. Draganovská, J. Brezinová, J. Viňáš, D. Cmorej, E. Janoško, and P.Maruschak, Acta Metallurgica Slovaca, 26, No. 2: 37 (2020).
  55. V. B. Tarel’nik, A. V. Paustovskii, Y. G. Tkachenko, V. S. Martsinkovskii, E. V. Konoplyanchenko, and K. Antoshevskii, Surf. Engin. Appl. Electrochem., 53: 285 (2017).
  56. V. B. Tarelnyk, O. P. Gaponova, V. I. Melnyk, N. V. Tarelnyk, V. M. Zubko, V. M. Vlasovets, Ie. V. Konoplianchenko, S. G. Bondarev, O. V. Radionov, M. M. Mayfat, V. O. Okhrimenko, and A. V. Tkachenko, Metallofiz. Noveishie Tekhnol., 45: 683 (2023) (in Ukrainian).