Pulsed Vacuum-Arc Plasma Source for Multicomponent Coatings

Iu. O. Sysoiev, Yu. V. Shyrokyi, K. V. Fesenko

National Aerospace University ‘Kharkiv Aviation Institute’, 17, Vadym Man’ko Str., 61070 Kharkiv, Ukraine

Received: 04.11.2024; final version - 20.12.2024. Download: PDF

The design and operating principle of a pulsed vacuum-arc plasma source for obtaining multicomponent coatings are presented. The proposed composite cathode assembly of this plasma source has a base made of a metal with high thermal conductivity, shaped like a cylinder with end surfaces, one of which is cooled. The cathode base has through holes arranged uniformly concentrically around the axis of the base, into which cylindrical inserts made of metals included in the coating composition are vacuum-sealed. The inserts are made in the form of sleeves with an insulator containing an igniting electrode tightly fitted inside each insert. In the case when the base material is part of the coating composition, instead of at least one hole for the insert, the cylindrical base has holes, into which insulators with igniting electrodes are vacuum-sealed. The principles of operation of the pulsed plasma source with the proposed composite cathode assembly for producing multicomponent coatings of a specified composition are described. Practical tests of the developed plasma source in the coating deposition mode (with an arc current amplitude of 420 A, arc pulse durations of 50 μs for titanium, 45 μs for molybdenum, and 665 μs for aluminium) at varying pulse frequencies demonstrated that the obtained multicomponent coatings closely match the specified composition, and the pulsed plasma source is characterized by reliable performance.

Key words: vacuum-arc coatings, multicomponent coatings, vacuum-arc discharge, pulsed plasma source, composite cathode assembly.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i10/1027.html

DOI: https://doi.org/10.15407/mfint.47.10.1027

PACS: 52.50.Dg, 52.77.-j, 68.35.Dv, 68.47.De, 81.15.Gh, 81.15.Rs, 89.20.Bb

Citation: Iu. O. Sysoiev, Yu. V. Shyrokyi, and K. V. Fesenko, Pulsed Vacuum-Arc Plasma Source for Multicomponent Coatings, Metallofiz. Noveishie Tekhnol., 47, No. 10: 1027–1042 (2025)


REFERENCES
  1. A. A. Andreev, L. P. Sablev, and S. N. Hryhorev, Vakuumno-Dugovoye Pokrytie [Vacuum-Arc Coatings] (Kharkiv: NSC ‘Kharkiv Institute of Physics and Technology’: 2010) (in Russian).
  2. Y. Y. Aksenov, A. A. Andreev, V. A. Belous, V. E. Strelnytskyi, and V. M. Khoroshykh, Vakuumnaya Duga: Istochnyki Plazmy, Osazhdenie Pokrytiy, Poverkhnostnoye Modifitsirovanie [Vacuum Arc: Plasma Sources, Coating Deposition, Surface Modification] (Kyiv: Naukova Dumka: 2012) (in Russian).
  3. Iu. O. Sysoiev, Tekhnolohiya Mashynobuduvannya. Zabezpechennya Ehfektyvnosti Protsesiv Otrymannya Vakuumno-Duhovykh Pokryttiv [Engineering Technology: Ensuring the Efficiency of Vacuum-Arc Coating Processes] (Kharkiv: National Aerospace University ‘Kharkiv Aviation Institute’: 2021) (in Ukrainian).
  4. Y. Y. Aksionov, V. A. Belous, S. K. Holtvyanytsa, V. S. Holtvyanytsa, Yu. A. Zadneprovskyy, A. S. Kupryn, N. S. Lomynoy, and O. V. Sobol’, PAST, No. 5: 119 (2010) (in Russian).
  5. O. V. Sobol’, A. O. Andreyev, I. V. Serdyuk, V. F. Horban’, N. V. Pinchuk, A. O. Meylekhov, Ye. O. Duma, and D. M. Babets, Visnyk Natsional’noho Tekhnichnoho Universytetu ‘KhPI’. Seriya: Mekhaniko-Tekhnolohichni Systemy ta Kompleksy, No. 60: 9 (2014) (in Ukrainian).
  6. V. A. Belous, Yu. A. Zadneprovskyy, N. S. Lomyno, and O. V. Sobol’, J. Techn. Phys., 83, No. 7: 69 (2013) (in Russian).
  7. A. A. Andreev, H. N. Kartmazov, T. B. Kostrytsa, and A. A. Romanov, Phys. Surf. Eng., 1, Nos. 3–4: 300 (2003) (in Russian).
  8. T. Cselle, Werkzeug Technik, No. 118: 2 (2011).
  9. PLATIT AG Catalog; https://www.platit.com/en
  10. N. D. Stepanov, N. Yu. Yurchenko, M. A. Tikhonovsky, and G. A. Salishchev, J. Alloy. Compd., 687: 59 (2016).
  11. Y. A. Yvanov, A. H. Slutskyy, V. A. Sheynert, V. A. Khlebtsevych, and E. V. Kovalevych, Sposob Yzhotovlenyya Kompozytsyonnykh Katodov na Osnove Sylytsydov Tytana dlya Yonno-Plazmennoho Synteza Mnohokomponentnykh Nanostrukturnykh Pokrytyy [Method for Production of Composite Cathodes Based on Titanium Silicides for Ionic-Plasma Synthesis of Multicomponent Nanostructure Coatings]: Patent No. 036799 B1 (2020) (in Belarusian).
  12. V. M. Pleskach, New Materials and Technologies in Metallurgy and Mechanical Engineering, No. 2: 118 (2017) (in Ukrainian).
  13. V. D. Rud, L. M. Samchuk, and I. V. Savyuk, Proc. Sixth Int. Sci. Practical Conf. ‘Energy Systems in Transport and Technologies and Equipment for Their Maintenance’ (Kherson: 2015), p. 71 (in Ukrainian).
  14. N. A. Azarenkov, O. V. Sobol’, A. D. Pogrebnyak, and V. M. Beresnev, Inzheneriya Vakuumno-Plazmennykh Pokrytiy [Engineering of Vacuum-Plasma Coatings] (Kharkiv: V. N. Karazin Kharkiv National University: 2011) (in Russian).
  15. E. V. Dabyzha, A. A. Leshchuk, Y. V. Bondar’, and N. N. Borysova, Modern Electrometallurgy, No. 1 (110): 21 (2013) (in Russian).
  16. S. D. Latushkyna, V. A. Shkrobot, Y. N. Zhohlyk, A. A. Predko, A. H. Artyomchyk, and O. Y. Posilkyna, Modern Methods and Technologies for Creating and Processing Materials (Minsk: PhTI NAS of Belarus: 2020), vol. 2, p. 266 (in Russian).
  17. V. M. Khoroshykh, PSE, 2, No. 4: 184 (2004) (in Russian).
  18. V. M. Khoroshykh, PSE, 2, No. 4: 200 (2004) (in Russian).
  19. D. S. Aksyonov, Y. Y. Aksyonov, and V. E. Strel’nytskyy, PAST, No. 6: 106 (2007) (in Russian).
  20. I. Mills, T. Cvita, K. Homman, N. Kallay, and K. Kuchitsu, Quantities, Units and Symbols in Physical Chemistry (Blackwell Publishing: 1993).
  21. A. W. Nürnberg, D. Y. Fang, U. H. Bauder, R. Behrisch, and F. Brossa, J. Nuclear Mater., 103: 305 (1981).
  22. V. Y. Asyunyn, S. H. Davydov, A. N. Dolhov, T. Y. Kozlovskaya, A. A. Pshenychnyy, and R. Kh. Yakubov, PAST, 38, No. 3: 49 (2015) (in Russian).
  23. Yu. O. Sysoiev, Yu. V. Shyrokyi, and K. V. Fesenko, PAST, No. 1 (149): 110 (2024).
  24. E. Hantzsche, Beitr. Plasmaphysik, 17, Iss. 1: 65 (1977).
  25. B. Juttner, Beitr. Plasmaphysik, 19, Iss. 1: 25 (1979).
  26. H.-J. Scheibe, P. Siemroth, W. Pompe, and B. Schoeneich, Surf. Coat. Technol., 47, Iss. 1–3: 455 (1991).
  27. Iu. Sysoiev, Yu. Shyrokyi, and K. Fesenko, PAST, No. 5 (147): 152 (2023).