Research of Influence of Productivity on Structural Formation of Surface Layers of Steel Details during Nitriding by Means of the Electrospark Alloying (ESA) Method. I. Evaluation of the Impact of Productivity on the Quality Parameters of the Surface Layers of Steel Parts during Nitriding by the ESA Method

V. B. Tarelnyk$^{1}$, O. P. Haponova$^{2,3}$, N. V. Tarelnyk$^{1}$, T. M. Volina$^{4}$, V. M. Zubko$^{1}$, M. Yu. Dumanchuk$^{1}$, O. M. Lavrenko$^{1}$, M. A. Mikulina$^{1}$, A. O. Dotsenko$^{1}$, O. Ye. Bilyi$^{1}$, S. S. Shevchenko$^{5}$, S. G. Bondarev$^{1}$, O. V. Semernya$^{1}$

$^{1}$Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine
$^{2}$Sumy State University, 116 Kharkivska Str., UA-40007 Sumy, Ukraine
$^{3}$Institute of Fundamental Technological Research, Polish Academy of Sciences, 5В Pawińskiego Str., 02-016 Warsaw, Poland
$^{4}$National University of Life and Environmental Sciences of Ukraine, 15 Heroyiv Oborony Str., UA-03041 Kyiv, Ukraine
$^{5}$G. E. Pukhov Institute for Modelling in Energy Engineering, N.A.S. of Ukraine, 15 General Naumov Str., 03164 Kyiv, Ukraine

Received: 25.12.2023; final version - 20.06.2024. Download: PDF

The importance and relevance of the problem of improving the quality parameters of surface layers of responsible parts of dynamic equipment (pump and compressor units, turbines, centrifuges, etc.), which limit their reliability and durability, are substantiated in the article. As emphasized, during the investigation of the quality parameters of surface layers synthesized by means of the electrospark alloying (ESA) technologies, during determining the influence of the energy parameters of the equipment on their structure formation, the main attention is paid to the influence of the energy discharge Wр, but the value of the processing productivity Q [cm2/min] is not practically taken into account. For evaluating the impact of productivity on the quality parameters of obtained coatings, the productivity is used in the research approximately two, three, and four times as less than the traditional one, i.e., the processing time τ of a unit of area (the labour intensity of the ESA process) is increased by two, three, and four times. Investigation of the features of microstructure formation and distribution of microhardness in the coating is carried out, and changes in roughness are analysed. As a result of the microstructural analysis of the treated surface after nitriding of steels 20 and 40 by the ESA method using a nitrogen-containing special technological saturating medium, it is revealed that, for all variants of the parameter Q, the structure consists of three areas: the ‘white layer’, the diffusion zone, and the base metal. At the same time, with an increase in Wp, the thicknesses of the ‘white’ layer and the diffusion (transitional) zone increase, and the microhardness, roughness, and integrity of the surface increase too. As the parameter τ increases, the thicknesses of the ‘white’ layer and the diffusion (transitional) zone increase, and the microhardness and integrity of the surface increase too. During replacing steel 20 with steel 40, the thicknesses of the ‘white’ layer and the diffusion zone, as well as the microhardness of the surface, increase slightly.

Key words: electrospark alloying, coating, electrode material, steel, layer thickness, roughness, integrity.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i10/1061.html

DOI: https://doi.org/10.15407/mfint.47.10.1061

PACS: 62.20.Qp, 68.35.Ct, 68.35.Gy, 68.55.J-, 68.55.Ln, 81.15.Rs, 81.65.Lp

Citation: V. B. Tarelnyk, O. P. Haponova, N. V. Tarelnyk, T. M. Volina, V. M. Zubko, M. Yu. Dumanchuk, O. M. Lavrenko, M. A. Mikulina, A. O. Dotsenko, O. Ye. Bilyi, S. S. Shevchenko, S. G. Bondarev, and O. V. Semernya, Research of Influence of Productivity on Structural Formation of Surface Layers of Steel Details during Nitriding by Means of the Electrospark Alloying (ESA) Method. I. Evaluation of the Impact of Productivity on the Quality Parameters of the Surface Layers of Steel Parts during Nitriding by the ESA Method, Metallofiz. Noveishie Tekhnol., 47, No. 10: 1061–1081 (2025) (in Ukrainian)


REFERENCES
  1. S. Shevchenko, O. Shevchenko, and S. Vynnychuk, Nuclear and Radiation Safety, No. 1 (89): 80 (2021).
  2. S. Shevchenko and O. Shevchenko, Nuclear and Radiation Safety, No. 4 (88): 47 (2020).
  3. V. S. Vahrusheva, D. B. Hlushkova, V. M. Volchuk, T. V. Nosova, S. I. Mamhur, N. I. Tsokur, V. A. Bagrov, S. V. Demchenko, Yu. V. Ryzhkov, and V. O. Scrypnikov, PAST, No. 4: 137 (2022).
  4. B. Antoszewski, S. Tofil, M. Scendo, and W. Tarelnik, IOP Conf. Ser.: Mater. Sci. Eng., 233: 012036 (2017).
  5. I. P. Shatskyi, V. V. Perepichka, and L. Ya. Ropyak, Metallofiz. Noveishie Tekhnol., 42, No. 1: 69 (2020) (in Ukrainian).
  6. M. S. Storozhenko, A. P. Umanskii, A. E. Terentiev, and I. M. Zakiev, Powder Metallurgy and Metal Ceramics, 56, Nos. 1–2: 60 (2017).
  7. O. Umanskyi, M. Storozhenko, G. Baglyuk, O. Melnyk, V. Brazhevsky, O. Chernyshov, O.Terentiev, Yu. Gubin, O. Kostenko, and I. Martsenyuk, Powder Metallurgy and Metal Ceramics, 59, Nos. 7–8: 434 (2020).
  8. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, and L. Ropyak, Materials, 15, No. 14: 5074 (2022).
  9. B. O. Trembach, M. G. Sukov, V. A. Vynar, I. O. Trembach, V. V. Subbotina, O. Yu. Rebrov, O. M. Rebrova, and V. I. Zakiev, Metallofiz. Noveishie Tekhnol., 44, No. 4: 493 (2022).
  10. L. Ropyak, I. Schuliar, and O. Bohachenko, Eastern-European J. Enterprise Technol., 1, No. 5: 53 (2016) (in Ukrainian).
  11. I. Ivasenko, V. Posuvailo, H. Veselivska, and V. Vynar, 2020 IEEE 15th Int. Conf. on Computer Sci. and Information Technol. (CSIT) (Zbarazh, 2020), p. 50.
  12. M. Bembenek, M. Makoviichuk, I. Shatskyi, L. Ropyak, I. Pritula, L. Gryn, and V. Belyakovskyi, Sensors, 22, No. 21: 8105 (2022).
  13. M. M. Student, V. M. Dovhunyk, V. M. Posuvailo, I. V. Koval’chuk, and V. M. Hvozdets’kyi, Mater. Sci., 53, No. 3: 359 (2017).
  14. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, Iss. 1: 83, (2022).
  15. S. Pylypaka, T. Volina, A. Nesvidomin, I. Zakharova, and A. Rebrii, Advances in Design, Simulation and Manufacturing IV (Eds. V. Ivanov, I. Pavlenko, O. Liaposhchenko, J. Machado, and M. Edl) (Springer: 2021), p. 156.
  16. S. Pylypaka, V. Nesvidomin, T. Volina, L. Sirykh, and L. Ivashyna, Agricultural Eng., 62, No. 3: 79 (2020).
  17. T. Volina, S. Pylypaka, A. Rebrii, O. Pavlenko, and Ya. Kremets, Advanced Manufacturing Processes II (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, A. Grabchenko, I. Pavlenko, M. Edl, I. Kuric, and P. Dasic) (Springer: 2021), p. 237.
  18. S. Pylypaka, T. Volina, M. Mukvich, G. Efremova, and O. Kozlova, Advances in Design, Simulation and Manufacturing III (Eds. V. Ivanov, I. Pavlenko, O. Liaposhchenko, J. Machado, and M. Edl) (Springer: 2020), p. 63.
  19. S. Pylypaka, T. Zaharova, O. Zalevska, D. Kozlov, and O. Podliniaieva, Advanced Manufacturing Processes (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, M. Edl, I. Kuric, I. Pavlenko, and P. Dasic)(Springer: 2020), p. 582.
  20. O. D. Pogrebnjak, K. O. Dyadyura, and O. P. Gaponova, Metallofiz. Noveishie Tekhnol., 37, No. 7: 899 (2015) (in Russian).
  21. V. B. Tarel’nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 266 (2017).
  22. V. B. Tarel’nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 385 (2017).
  23. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Proc. Eng., 39: 157 (2012).
  24. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplyanchenko, N. S. Yevtushenko, and V. O. Herasymenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018) (in Russian).
  25. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Proc. Eng., 39: 148 (2012).
  26. V. Tarelnyk, I. Konoplianchenko, N. Tarelnyk, and A. Kozachenko, Mater. Sci. Forum, 968: 131 (2019).
  27. V. A. Tatarenko, T. M. Radchenko, A. Yu. Naumuk, and B. M. Mordyuk, Progress in Physics of Metals, 26, No. 1: 3 (2025).
  28. D. B. Hlushkova, V. A. Bagrov, S. V. Demchenko, V. M. Volchuk, O. V. Kalinin, and N. E. Kalinina, PAST, No. 4: 125 (2022).
  29. A. Zahorulko, C. Kundera, and S. Hudkov, IOP Conf. Ser.: Mater. Sci. Eng., 233: 012039 (2017).
  30. F. A. P. Fernandes, S. C. Heck, R. G. Pereira, A. Lombardi-Neto, G. E. Totten, and L. C. Casteletti, J. Achievements Mater. Manufacturing Eng., 40: 175 (2010).
  31. S.-H. Yeh, L.-H. Chiu, and H. Chang, Eng., 3, No. 9: 942 (2011).
  32. S. Ben Slima, Mater. Sci. Applications, 3, No. 9: 640 (2012).
  33. E. J. Lavernia and T. S. Srivastan, J. Mater. Sci., 45: 287 (2010).
  34. M. Salehi and K. Dehghani, J. Alloys Compd., 457: 357 (2008).
  35. F. Zupanic, T. Boncina, A. Krizman, W. Grogger, C. Gspan, B. Markoli, and S. Spaic, J. Alloys Compd., 452: 343 (2008).
  36. M. Brochu, J. G. Portillo, J. Milligan, and D. W. Heard, Open Surface Sci. J., 3: 105 (2011).
  37. V. V. Bryukhovetsky, V. F. Klepikov, V. V. Lytvynenko, D. E. Myla, V. P. Poyda, A. V. Poyda, V. T. Uvarov, Yu. F. Lonin, and A. G. Ponomarev, Nuclear Inst. Methods in Phys. Research B, 499: 25 (2021).
  38. V. P. Poida, D. E. Pedun, V. V. Bruhovetskii, A. V. Poida, R. V. Sukhov, A. L. Samsonik, and V. V. Litvinenko, Phys. Metals Metallography, 114: 779 (2013).
  39. S. E. Donets, V. F. Klepikov, V. V. Lytvynenko, Yu. F. Lonin, A. G. Ponomarev, O. A. Startsev, and V. T. Uvarov, PAST, No. 4: 302 (2015).
  40. V. F. Klepikov, V. V. Lytvynenko, Yu. F. Lonin, A. G. Ponomarev, O. G. Tolstolutskiy, V. V. Uvarov, and V. T. Uvarov, PAST, No. 1: 119 (2009).
  41. V. F. Klepikov, E. M. Prokhorenko, V. V. Lytvynenko, A. A. Zakharchenko, and M. A. Hazhmuradov, PAST, No. 2: 193 (2015).
  42. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings (Eds. A. D. Pogrebnjak and V. Novosad) (Springer: 2019), p. 249.
  43. V. B. Tarelnyk, O. P. Gaponova, N. V. Tarelnyk, and O. M. Myslyvchenko, Progress in Physics of Metals, 24, No. 2: 282 (2023).
  44. G. V. Kirik, O. P. Gaponova, V. B. Tarelnyk, O. M. Myslyvchenko, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 56: 688 (2018).
  45. V. Tarelnyk and V. Martsynkovskyy, Applied Mech. Mater., 630: 397 (2014).
  46. V. B. Tarel’nik, E. V. Konoplyanchenko, P. V. Kosenko, and V. S. Martsinkovskii, Chem. Petroleum Eng., 53: 540 (2017).
  47. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, I. Konoplianchenko, A. Belous, V. Gerasimenko, and M. Zakharov, IOP Conf. Ser.: Mater. Sci. Eng., 233: 012048 (2017).
  48. V. B. Tarelnik, A. V. Paustovskii, Yu. G. Tkachenko, V. S. Martsinkovskii, A. V. Belous, E. V. Konoplyanchenko, and O. P. Gaponova, Surf. Eng. Applied Electrochem., 54, No. 2: 147 (2018).
  49. V. B. Tarelnyk, Ie. V. Konoplianchenko, O. P. Gaponova, N. V. Tarelnyk, V. S. Martsynkovskyy, B. O. Sarzhanov, O. A. Sarzhanov, and B. Antoszewski, Powder Metall. Met. Ceram., 58: 703 (2020).
  50. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, O. Gaponova, and M. Dumanchuk, Advances in Design, Simulation and Manufacturing II (Eds. V. Ivanov, J. Trojanowska, J. Machado, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Springer: 2019), p. 216.
  51. B. Antoszewski, O. P. Gaponova, V. B. Tarelnyk, O. M. Myslyvchenko, P. Kurp, T. I. Zhylenko, and I. Konoplianchenko, Materials, 14, Iss. 4: 739 (2021).
  52. O. P. Gaponova, V. B. Tarelnyk, B. Antoszewski, N. Radek, N. V. Tarelnyk, P. Kurp, O. M. Myslyvchenko, and J. Hoffman, Materials, 15, Iss. 17: 6085 (2022).
  53. V. B. Tarelnyk, O. P. Gaponova, V. B. Loboda, E. V. Konoplyanchenko, V. S. Martsinkovskii, Yu. I. Semirnenko, N. V. Tarelnyk, M. A. Mikulina, and B. A. Sarzhanov, Surf. Eng. Applied Electrochem., 57: 173 (2021).