Thermodynamic Properties of the Melts of Mg–Si and Al–Mg–Si Systems

D. V. Tsaryuk$^{1}$, T. V. Pryadko$^{1}$, V. K. Nosenko$^{1}$, A. V. Nosenko$^{1}$, V. S. Sudavtsova$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$I. M. Frantsevych Institute for Problems in Materials Science, N.A.S. of Ukraine, 3 Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine

Received: 07.11.2024; final version - 19.05.2025. Download: PDF

The activity of silicon according to the derived equation and other thermodynamic properties of melts of the Mg–Si system is calculated from the coordinates of the liquidus curve of the state diagram, where there is pure component–liquid solution equilibrium. The results are consistent with the data determined by the most accurate method of EMF. According to the calculations, the partial enthalpy and entropy of mixing of Si in Mg–Si melts are of −43.7 kJ/mol and −11.3 J/(mol⋅K), respectively. The thermochemical properties of melts of the radial cross-section with хAl/хMg = 0.5/0.5 of the Al–Mg–Si system at 1319 ± 2 K are determined for the first time by the method of calorimetry. As found, ΔSi(Ge) = −79 ± 6 kJ/mol, and the minimum enthalpy of melt mixing, determined by extrapolation, is equal to −16.1 ± 0.6 kJ/mol and falls on the alloy with xSi = 0.45. Using the Redlich–Kister–Muggiano model with a triple contribution of −125 kJ/mol, the activities of the components, Gibbs energies, and entropies of mixing of the melts of this system are also calculated from similar data of the double boundary subsystems. As shown, at 1350 K, the minimum Gibbs energy is equal to −18.1 kJ/mol, and ΔSmin = −2.2 J/(mol⋅K). The calculated and experimentally determined enthalpies of mixing of Al–Mg–Si melts are in good agreement with each other.

Key words: calorimetry method, enthalpy of mixing, activity, melts, thermodynamic properties, ‘geometric’ and ‘analytical’ models.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i11/1137.html

DOI: https://doi.org/10.15407/mfint.47.11.1137

PACS: 05.70.Ce, 07.20.Fw, 64.75.Bc, 64.75.Ef, 65.20.Jk, 81.30.Bx, 82.60.Lf

Citation: D. V. Tsaryuk, T. V. Pryadko, V. K. Nosenko, A. V. Nosenko, and V. S. Sudavtsova, Thermodynamic Properties of the Melts of Mg–Si and Al–Mg–Si Systems, Metallofiz. Noveishie Tekhnol., 47, No. 11: 1137–1148 (2025) (in Ukrainian)


REFERENCES
  1. M. Dargusch, The Role of Microstructure in the Creep of Die Cast Magnesium Alloy (Thesis of Disser. for PhD) (Brisban: University of Queensland: 1998).
  2. N. Hohne, M. Elzen, J. Rogelj, B. Metz, T. Fransen, T. Kuramochi, A. Olhoff, J. Alcamo, H. Winkler, S. Fu, M. Schaeffer, R. Schaeffer, G. P. Peters, S. Maxwell, and N. K. Dubash, Nature, 579: 25 (2020).
  3. A. H. Musfirah and A. G. Jaharah, J. Applied Sci. Research, 8: 4865 (2012).
  4. M. S. Yoo, Y. C. Kim, S. Ahn, and N. J. Kim, Mater. Sci. Forum, 419–422: 419 (2003).
  5. J. M. Eldridge, E. Miller, and K. L. Komarek, Trans. Met. Soc. AIME, 239, No. 6: 775 (1967).
  6. R. Geffken and E. Miller, Trans. Met. Soc. AIME, 242: 2323 (1968).
  7. K. B. Poyarkov, Issledovanie Termodinamicheskikh Svoistv i Termicheskoy Stabil’nosti Poluprovodnikovykh Soyedineniy Magniya s Ehlementami IV Gruppy Periodicheskoy Sistemy D. I. Mendeleeva [Study of the Thermodynamic Properties and Thermal Stability of Semiconductor Compounds of Magnesium with Elements of the IV Group of the Periodic Table D. I. Mendeleev] (Thesis of Disser. for Cand. Chem. Sci.) (Moskva: 1981) (in Russian).
  8. B. C. Sudavtsova, G. I. Batalin, and L. N. Zelenina, Ukrayins’kyy Khimichnyy Zhurnal, 54, No. 6: 655 (1988) (in Russian).
  9. V. S. Sudavtsova, Termodynamika Metalurgiynykh i Zvaryuval’nykh Rozpla-Viv. Ch. 2 (Splavy na Osnovi Sylitsiyu i Midi) [Thermodynamics of Metallurgical and Welding Melts. Part 2 (Alloys Based on Silicon and Copper)] (Kyiv: Lohos: 2005) (in Ukrainian).
  10. H. Feufel, T. Godecke, H. L. Lukas, and F. Sommer, J. Alloys Compd., 247, Iss. 1–2: 31 (1997).
  11. I. H. Jung, D. H. Kang, W. J. Park, N. J. Kim, and S. H. Ahn, Calphad, 31, Iss. 2: 192 (2007).
  12. I. T. Sryvalin, O. A. Esin, and B. M. Lepinskikh, Zhurnal Fizicheskoy Khimii, 38, No. 5: 1166 (1964) (in Russian).
  13. Y. K. Rao and G. R. Belton, Thermodynamic Properties of Mg–Si System (Eds. N. A. Gokcen) (The Metallurgical Society of AIME: 1981), p. 75.
  14. V. S. Sudavtsova, V. A. Makara, and V. H. Kudin, Termodynamika Meta-lurgiynykh i Zvaryuval’nykh Rozplaviv. Ch. 3 [Thermodynamics of Metallurgical and Welding Melts. Pt. 3] (Kyiv: Lohos: 2005) (in Ukrainian).
  15. V. S. Sudavtsova, M. O. Shevchenko, M. I. Ivanov, and V. H. Kudin, Termodynamichni Vlastyvosti Splaviv Podviynykh i Potriynykh System, Utvorenykh Alyuminiyem, Perekhidnymy ta Ridkisnozemel’nymy Metalamy [Thermodynamic Properties of Alloys of Double and Ternary Systems Formed by Aluminium, Transition and Rare Earth Metals] (Kyiv: Naukova Dumka: 2021) (in Ukrainian).
  16. A. T. Dinsdale, Calphad, 15, Iss. 4: 319 (1991).
  17. Binary Alloy Phase Diagrams (Eds. T. B. Massalski) (Ohio: ASM International: 1990).
  18. P. Liang, H. L. Su, P. Donnadieu, M. G. Harmelin, A. Quivy, and P. Ochin, Z. Metallkd., 89, No. 8: 536 (1998).