Microstructure Evolution of a Steel Bar during FEM Simulation of Radial-Shear Broaching and Subsequent Drawing

I. E. Volokitina, E. A. Panin

Karaganda Industrial University, 30 Republic Ave., 101400 Temirtau, Republic of Kazakhstan

Received: 20.08.2024; final version - 01.11.2024. Download: PDF

The paper presents the results of finite element modelling of the microstructure evolution in the implementation of the combined technology of radial-shear broaching and subsequent drawing by JMAK and cellular automata methods. The analysis of the results shows that the simulation results have a high degree of convergence with each other; so, it can be recommended to use any of these methods to obtain information about the grain sizes. Workpiece deformation with a diameter of 30 mm to 20 mm at ambient temperature is the most effective method, since it allows refining the initial grain more than 3 times on the workpiece surface, from 25 μm to 8 μm. At the same time, workpiece deformation with a diameter of 30 mm to 23 mm at ambient temperature gives a twofold refinement of the initial grain, from 25 μm to 12 μm. The processing of the central area of the workpiece in all considered models is insignificant; it reaches only a 35%-reduction under the most optimal conditions.

Key words: steel, drawing, radial-shear broaching, severe plastic deformation, bar.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i11/1199.html

DOI: https://doi.org/10.15407/mfint.47.11.1199

PACS: 06.60.Vz, 46.70.Hg, 61.72.Mm, 81.20.Hy, 81.20.Wk, 81.40.Ef, 83.50.Uv

Citation: I. E. Volokitina and E. A. Panin, Microstructure Evolution of a Steel Bar during FEM Simulation of Radial-Shear Broaching and Subsequent Drawing, Metallofiz. Noveishie Tekhnol., 47, No. 11: 1199–1213 (2025)


REFERENCES
  1. I. E. Volokitina, Progress in Physics of Metals, 24, No. 3: 593 (2023).
  2. B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies in Construction Materials, 18: e02162 (2023).
  3. I. E. Volokitina and A. V. Volokitin, Metallurgist, 67: 232 (2023).
  4. E. Panin, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Z. Gelmanova, and Y. Liseitsev, Case Studies in Construction Materials, 19: e02609 (2023).
  5. I. E. Volokitina, A. V. Volokitin, M. A. Latypova, V. V. Chigirinsky, and A. S. Kolesnikov, Progress in Physics of Metals, 24, No. 1: 132 (2023).
  6. V. V. Chigirinsky, Y. S. Kresanov, and I. E. Volokitina, Metallofiz. Noveishie Tekhnol., 45, No. 4: 467 (2023).
  7. A. Denissova, Y. Kuatbay, and Y. Liseitsev, Case Studies in Construction Materials, 19: e02346 (2023).
  8. T. Simon, A. Kroger, C. Somsen, A. Dlouhy, and G. Eggeler, Acta Mater., 58: 1850 (2010).
  9. K. V. Ramaiah, C. N. Saikrishna, and S. K. Bhaumik, Mater. Des., 56: 78 (2014).
  10. A. Bychkov and A. Kolesnikov, Metallography, Microstructure, and Analysis, 12: 564 (2023).
  11. J. L. Xu, L. Z. Bao, A. H. Liu, X. J. Jin, Y. X. Tong, J. M. Luo, Z. C. Zhong, and Y. F. Zheng, Mater. Sci. Eng. C, 46: 387 (2015).
  12. A. Volokitin, I. Volokitina, and E. Panin, Metallography, Microstructure, and Analysis, 11: 673 (2022).
  13. G. Raab, A. Raab, R. Asfandiyarov, and E. Fakhretdinova, Non-Equilibrium Phase Transformations, 1: 10 (2017).
  14. A. Naizabekov, S. Lezhnev, E. Panin, A. Arbuz, T. Koinov, and I. Mazur, J. Mater. Eng. Perform., 28: 200 (2019).
  15. V. A. Kharitonov and M. Usanov, Letters on Materials, 4: 37 (2014).
  16. J. G. Lenard, M. Pietrzyk, and L. Cser, Mathematical and Physical Simulation of the Properties of Hot Rolled Products (Amsterdam: Elsevier: 2005).