Parametric Investigations on Dynamic Responses of Porous Functionally Graded Al/Al2O3 Plates: Effects of Homogenization Models and Material Distributions

M. Hadji$^{1}$, B. Rebai$^{2}$, M. Rabehi$^{3}$, M. Meradjah$^{4,5}$, T. Messas$^{2}$

$^{1}$Climatic Engineering Department, Faculty of Sciences and Technology, University of Brothers Mentouri Constantine 1, Constantine, Algeria
$^{2}$Civil Engineering Department, Faculty of Sciences and Technology, Abbes Laghrour University, Khenchela, Algeria
$^{3}$Abdelhafid Boussouf University, Mila, Algeria
$^{4}$Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes, Algeria
$^{5}$Multiscale Modelling and Simulation Laboratory of Sidi Bel Abbes, Algeria

Received: 01.08.2024; final version - 27.08.2024. Download: PDF

This study analyses numerically the dynamic responses of functionally grad-ed Al/Al2O3 plates with porosity. It investigates the effects of key parameters including thickness-to-span ratio and porosity coefficient on the non-dimensional fundamental frequencies. Various micromechanical homogenization models (by Voigt, Mori–Tanaka, LRVE, Tamura, Reuss) are applied across different-material volume-fraction distribution profiles (power-law, Viola–Tornabene four-parameters’, trigonometric ones). Four porosity-variation patterns are considered: even, uneven, logarithmic-uneven, and mass-density. The Navier solution technique is employed to solve the governing equations. Results show that the Viola–Tornabene model produces the highest frequencies, followed by power-law and trigonometric models. Mass-density porosity yields maximum frequencies, while even porosity gives minimum values. Increasing porosity coefficient generally increases frequencies, except for even porosity. Increasing thickness-to-span ratio decreases frequencies across all models. The findings provide insights for optimizing functionally graded porous plate designs.

Key words: functionally graded materials, elastic foundations, homogenization models, dynamic response, porosity, fundamental frequencies.

URL: https://mfint.imp.kiev.ua/en/abstract/v47/i11/1239.html

DOI: https://doi.org/10.15407/mfint.47.11.1239

PACS: 46.40.-f, 46.50.+a, 61.43.Gt, 62.20.mj, 62.20.mm, 62.30.+d, 81.05.Rm

Citation: M. Hadji, B. Rebai, M. Rabehi, M. Meradjah, and T. Messas, Parametric Investigations on Dynamic Responses of Porous Functionally Graded Al/Al2O3 Plates: Effects of Homogenization Models and Material Distributions, Metallofiz. Noveishie Tekhnol., 47, No. 11: 1239–1256 (2025)


REFERENCES
  1. M. Naebe and K. Shirvanimoghaddam, Appl. Mater. Today, 5: 223 (2016).
  2. J. Zhu, Z. Lai, Z. Yin, J. Jeon, and S. Lee, Mater. Chem. Phys., 68: 130 (2001).
  3. N. Wattanasakulpong, B. G. Prusty, D. W. Kelly, and M. Hoffman, Mater. Design, 36: 182 (2012).
  4. F. Y. Addou, M. Meradjah, A. A. Bousahla, A. Benachour, F. Bourada, A. Tounsi, and S. R. Mahmoud, Computers and Concrete, 24, Iss. 4: 347 (2019).
  5. F. Z. Zaoui, D. Ouinas, B. Achour, M. Touahmia, M. Boukendakdji, E. R. Latifee, and J. A. Viña Olay, Mathematics, 10: 4764 (2022).
  6. B. Damani, A. Fekrar, M. M. Selim, K. H. Benrahou, A. Benachour, A. Tounsi, and M. Hussain, Struct. Eng. Mech., 78: 439 (2021).
  7. S. Merdaci, H. M. Adda, B. Hakima, R. Dimitri, and F. Tornabene, J. Compos. Sci., 5: 305 (2021).
  8. A. Mahmoudi, R. Bachir-Bouiadjra, S. Benyoucef, and A. Tounsi, Nature Technol., 17: (2017).
  9. A. Berkia, B. Rebai, B. Litouche, S. Abbas, and K. Mansouri, AIMS Mater. Sci., 10, Iss. 5: 891 (2023).
  10. R. Billel, AIMS Mater. Sci., 10, Iss. 1: 26 (2023).
  11. H. Benaddi, B. Rebai, K. Mansouri, N. M. Seyam, and A. M. Zenkour, J. Comput. Appl. Mech., 55, Iss. 3: 369 (2024).
  12. Z. Yin, H. Gao, and G. Lin, Eng. Analysis Boundary Elements, 133: 185 (2021).
  13. Y. S. Al Rjoub and J. A. Alshatnawi, Structures, 28: 2392 (2020).
  14. X. Hu and T. Fu, J. Mech. Sci. Technol., 37: 5725 (2023).
  15. M. Kaddari, A. Kaci, A. A. Bousahla, A. Tounsi, F. Bourada, E. A. Bedia, and M. A. Al-Osta, Computers and Concrete, 25, Iss. 1: 37 (2020).
  16. N. Sharma, P. Tiwari, D. K. Maiti, and D. Maity, Composites Part C, 6: 100208 (2021).
  17. S. K. Sah and A. Ghosh, Composite Structures, 279: 114795 (2022).
  18. V. Kumar, S. J. Singh, V. H. Saran, and S. P. Harsha, Eur. J. Mech. A/Solids, 85: 104124 (2021).
  19. V. Kumar, S. J. Singh, V. H. Saran, and S. P. Harsha, Int. J. Struct. Stab. Dyn., 23: 2350024 (2023).
  20. D. Shahsavari, M. Shahsavari, L. Li, and B. Karami, Aerosp. Sci. Technol., 72: 134 (2018).
  21. M. Arefi, M. Kiani, and A. M. Zenkour, J. Sandwich Struct. Mater., 22: 55 (2020).
  22. W. Y. Jung, W. T. Park, and S. C. Han, Int. J. Mech. Sci., 87: 150 (2014).
  23. L. L. Ke, J. Yang, S. Kitipornchai, and M. A. Bradford, Composite Structures, 94: 3250 (2012).
  24. K. Magnucki and P. Stasiewicz, J. Theor. Appl. Mech., 42: 859 (2004).
  25. N. Wattanasakulpong and V. Ungbhakorn, Aerospace Sci. Technol., 32, Iss. 1: 111 (2014).
  26. D. Chen, J. Yang, and S. Kitipornchai, Composite Structures, 133: 54 (2015).
  27. D. Chen, S. Kitipornchai, and J. Yang, Thin-Walled Structures, 107: 39 (2016).
  28. M. Jabbari, A. Mojahedin, A. Khorshidvand, and M. Eslami, J. Eng. Mech., 140: 287 (2014).
  29. A. Mojahedin, E. F. Joubaneh, and M. Jabbari, Acta Mech., 225: 3437 (2014).
  30. T. Yu, T. Q. Bui, S. Yin, D. H. Doan, C. Wu, T. Van Do, and S. Tanaka, Composite Structures, 136: 684 (2016).
  31. F. Mouaici, S. Benyoucef, H. A. Atmane, and A. Tounsi, Wind Struct., 22: 429 (2016).