Исследование порошков MgO, синтезированных жидкофазным методом

Б. Заиди$^{1}$, С. Белайт$^{1}$, М. С. Уллах$^{2}$, Б. Хаджуджа$^{3}$, А. Гуэррауи$^{1}$, С. Гагуи$^{3}$, Н. Хуаиджи$^{3}$, Б. Чуял$^{3}$, К. Шекхар$^{4}$

$^{1}$Department of Physics, Faculty of Material Sciences, University of Batna 1, Allées 19 mai, Route de Biskra, 05000 Batna, Algérie
$^{2}$Department of Electrical and Computer Engineering, Florida Polytechnic University, 4700 Research Way, Lakeland, FL 33805-8531, USA
$^{3}$Badji Mokhtar University, B.P. 12, Sidi Amar, CP 23000 Annaba, Algeria
$^{4}$Department of Applied Physics, Amity University, Gurgaon, Haryana 122413, India

Получена: 02.12.2018; окончательный вариант - 17.04.2019. Скачать: PDF

Порошки оксида магния (MgO), полученные жидкофазным методом, были охарактеризованы методами рентгеновской дифракции, сканирующей электронной микроскопии (SEM) и энергодисперсионной рентгеновской спектроскопии (EDX). Исследования подтвердили, что полученные частицы MgO имеют кубическую структуру. Синтезированные порошки имеют высокую чистоту. Рентгеноструктурный анализ показал, что нанокристаллический размер наночастиц MgO сопровождается необыкновенно близкими размерами зёрен.

Ключевые слова: наночастицы MgO, рентгеноструктурный анализ, EDX, SEM.

URL: http://mfint.imp.kiev.ua/ru/abstract/v41/i08/1121.html

PACS: 61.43.Gt, 61.46.Hk, 81.05.Cy, 81.05.Rm, 81.07.Bc, 81.07.Wx, 81.20.Fw


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. D. C. Reynolds, D. C. Look, and B. Jogai, Solid State Commun., 99: 873 (1996). Crossref
  2. Yu. V. Naidich, I. I. Gab, T. V. Stetsyuk, B. D. Kostyuk, and D. B. Shakhnin, Metallofiz. Noveishie Tekhnol., 40, No. 10: 1359 (2018). Crossref
  3. G. W. Wagner, P. W. Bartram, O. Koper, and K. J. Klabunde, J. Phys. Chem. B, 103: 3225 (1999). Crossref
  4. G. W. Wagner, L. R. Procell, R. J. O’Connor, S. Munavalli, C. L. Carnes, P. N. Kapoor, and K. J. Klabunde, J. Am. Chem. Soc., 123: 1636 (2001). Crossref
  5. Y. Oh, S. Lim, S. D. Ahn, S. S. Lee, K. Cho, J. B. Koo, R. Choi, and M. Hasan, J. Phys. D, 46: 285101 (2013). Crossref
  6. Y. R. Li, Z. Liang, Y. Zhang, J. Zhu, S. W. Jiang, and X. H. Wei, Thin Solid Films, 489: 245 (2005). Crossref
  7. J. Sawai, H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, T. Sawaki, A. Hakoda, E. Kawada, V. Kokugan, and M Shimizu, World J. Microb. Biotechnol., 16: 187 (2000). Crossref
  8. S. Veldurthi, C. Shin, O. S. Joo, and K. D. Jung, Microporous Mesoporous Mater, 152: 31 (2012). Crossref
  9. Z. Zhao, H. Dai, Y. Du, J. Deng, L .Zhang, and F. Shi, Mater Chem. Phys., 128: 348 (2011). Crossref
  10. H. Li, M. Li, X. Wang, X. Wu, F. Liu, and B. Yang, Mater Lett., 102: 80 (2013). Crossref
  11. R. Hahn, J. G. Brunner , J. Kunze, P. Schmuki, and S. Virtanen, Electrochem Commun., 10: 288 (2008). Crossref
  12. M. A. Alavi and A. Morsali, Ultrason Sonochem., 17: 441 (2010). Crossref
  13. R. Al-Gaashani, S. Radiman, Y. Al-Douri, N. Tabet, and A. R. Daud, J. Alloys Compd., 521: 71 (2012). Crossref
  14. W. Rizwan, S. Absari, M. Dar, Y. Kim, and H .Shin, Mater. Sci. Forum, 558–559: 983 (2007). Crossref
  15. T. Phuoc, B. H. Howard, D. V.Martello, Y. Soong, and M. K. Chyu, Opt. Laser. Eng., 46: 829 (2008). Crossref
  16. B. A. Morales, T. Lopez, and R. Gomez, J. Solid State Chemistry, 115: 411 (1995). Crossref
  17. M. Nusheh, H. Yoozbashizadeh, M. Askari, H. Kobatake, and H. Fukuyama, J. Alloys Compd., 506: 715 (2010). Crossref
  18. A. Karatutlu, A. Barhoum, and A. Sapelkin, Engineering Applications of Nanoparticles and Archituctural nanostructures, (Eds. Ahmed Barhoum and Abdel Salam Hamdy Makhlouf) (Elsevier: 2018), p. 1. Crossref
  19. V. Smith, X-ray Powder Data File, American Society for Testing Materials (1960).