Investigation of MgO Powders Synthesized by Liquid-Phase Method

B. Zaidi$^{1}$, S. Belghit$^{1}$, M. S. Ullah$^{2}$, B. Hadjoudja$^{3}$, A. Guerraoui$^{1}$, S. Gagui$^{3}$, N. Houaidji$^{3}$, B. Chouial$^{3}$, C. Shekhar$^{4}$

$^{1}$Department of Physics, Faculty of Material Sciences, University of Batna 1, Allées 19 mai, Route de Biskra, 05000 Batna, Algérie
$^{2}$Department of Electrical and Computer Engineering, Florida Polytechnic University, 4700 Research Way, Lakeland, FL 33805-8531, USA
$^{3}$Badji Mokhtar University, B.P. 12, Sidi Amar, CP 23000 Annaba, Algeria
$^{4}$Department of Applied Physics, Amity University, Gurgaon, Haryana 122413, India

Received: 02.12.2018; final version - 17.04.2019. Download: PDF

Magnesium oxide (MgO) powders are prepared by liquid-phase method and are characterized by X-ray diffraction (XRD), SEM and EDX characterization studies. The characterization confirms that MgO particles obtained shows cubic structure. The synthesized powders have high purity. The XRD analysis shows that nanocrystalline size of MgO nanoparticles is accompanied with remarkably uniform grain size.

Key words: MgO nanoparticles, XRD, EDX, SEM.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i08/1121.html

DOI: https://doi.org/10.15407/mfint.41.08.1121

PACS: 61.43.Gt, 61.46.Hk, 81.05.Cy, 81.05.Rm, 81.07.Bc, 81.07.Wx, 81.20.Fw

Citation: B. Zaidi, S. Belghit, M. S. Ullah, B. Hadjoudja, A. Guerraoui, S. Gagui, N. Houaidji, B. Chouial, and C. Shekhar, Investigation of MgO Powders Synthesized by Liquid-Phase Method, Metallofiz. Noveishie Tekhnol., 41, No. 8: 1121—1126 (2019)


REFERENCES
  1. D. C. Reynolds, D. C. Look, and B. Jogai, Solid State Commun., 99: 873 (1996). Crossref
  2. Yu. V. Naidich, I. I. Gab, T. V. Stetsyuk, B. D. Kostyuk, and D. B. Shakhnin, Metallofiz. Noveishie Tekhnol., 40, No. 10: 1359 (2018). Crossref
  3. G. W. Wagner, P. W. Bartram, O. Koper, and K. J. Klabunde, J. Phys. Chem. B, 103: 3225 (1999). Crossref
  4. G. W. Wagner, L. R. Procell, R. J. O'Connor, S. Munavalli, C. L. Carnes, P. N. Kapoor, and K. J. Klabunde, J. Am. Chem. Soc., 123: 1636 (2001). Crossref
  5. Y. Oh, S. Lim, S. D. Ahn, S. S. Lee, K. Cho, J. B. Koo, R. Choi, and M. Hasan, J. Phys. D, 46: 285101 (2013). Crossref
  6. Y. R. Li, Z. Liang, Y. Zhang, J. Zhu, S. W. Jiang, and X. H. Wei, Thin Solid Films, 489: 245 (2005). Crossref
  7. J. Sawai, H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, T. Sawaki, A. Hakoda, E. Kawada, V. Kokugan, and M Shimizu, World J. Microb. Biotechnol., 16: 187 (2000). Crossref
  8. S. Veldurthi, C. Shin, O. S. Joo, and K. D. Jung, Microporous Mesoporous Mater, 152: 31 (2012). Crossref
  9. Z. Zhao, H. Dai, Y. Du, J. Deng, L .Zhang, and F. Shi, Mater Chem. Phys., 128: 348 (2011). Crossref
  10. H. Li, M. Li, X. Wang, X. Wu, F. Liu, and B. Yang, Mater Lett., 102: 80 (2013). Crossref
  11. R. Hahn, J. G. Brunner , J. Kunze, P. Schmuki, and S. Virtanen, Electrochem Commun., 10: 288 (2008). Crossref
  12. M. A. Alavi and A. Morsali, Ultrason Sonochem., 17: 441 (2010). Crossref
  13. R. Al-Gaashani, S. Radiman, Y. Al-Douri, N. Tabet, and A. R. Daud, J. Alloys Compd., 521: 71 (2012). Crossref
  14. W. Rizwan, S. Absari, M. Dar, Y. Kim, and H .Shin, Mater. Sci. Forum, 558-559: 983 (2007). Crossref
  15. T. Phuoc, B. H. Howard, D. V.Martello, Y. Soong, and M. K. Chyu, Opt. Laser. Eng., 46: 829 (2008). Crossref
  16. B. A. Morales, T. Lopez, and R. Gomez, J. Solid State Chemistry, 115: 411 (1995). Crossref
  17. M. Nusheh, H. Yoozbashizadeh, M. Askari, H. Kobatake, and H. Fukuyama, J. Alloys Compd., 506: 715 (2010). Crossref
  18. A. Karatutlu, A. Barhoum, and A. Sapelkin, Engineering Applications of Nanoparticles and Archituctural nanostructures, (Eds. Ahmed Barhoum and Abdel Salam Hamdy Makhlouf) (Elsevier: 2018), p. 1. Crossref
  19. V. Smith, X-ray Powder Data File, American Society for Testing Materials (1960).