Loading [MathJax]/jax/output/HTML-CSS/jax.js

Улучшение механических и антикоррозионных свойств поверхности сплава АМг6 электроискровым легированием Ті и высокочастотной ударной обработкой

В. В. Могилко1, А. П. Бурмак1, С. М. Волошко1, C. И. Сидоренко1, Б. Н. Мордюк1,2

1Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», просп. Победы, 37, 03056 Киев, Украина
2Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина

Получена: 30.09.2021; окончательный вариант - 13.10.2021. Скачать: PDF

Проанализированы микроструктура, упрочнение и коррозионные свойства поверхностных слоёв алюминиевого сплава АМг6, модифицированных ультразвуковой ударной обработкой (УЗУО) и комбинированной обработкой, объединяющей электроискровое легирование (ЭИЛ) титаном и УЗУО. Рентгеноструктурный фазовый анализ и трансмиссионная электронная микроскопия показали, что комбинированная обработка (ЭИЛ + УЗУО) ведёт к двойному росту микротвёрдости по сравнению с УЗУО за счёт формирования твёрдого раствора TiAl и интерметаллидных фаз TixAly, а также незначительного количества оксидов, которые усиливают дислокационное и зерённограничное упрочнение. ЭИЛ + УЗУО ведёт к высокой коррозионной стойкости сплава АМг6 в водном растворе 3,5% NaCl, что проявляется в повышении значений потенциала коррозии на 40–70 мВ по сравнению с образцом после УЗУО, что обусловлено сформированным структурно-фазовым состоянием модифицированной поверхности.

Ключевые слова: ультразвуковая ударная обработка, электроискровое легирования, микроструктура, микротвёрдость, коррозия.

URL: https://mfint.imp.kiev.ua/ru/abstract/v44/i02/0223.html

PACS: 43.35.+d, 61.72.Ff, 81.40.Cd, 81.40.-z, 81.65.-b, 81.65.Kn


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. V. G. Efremenko, K. Shimizu, T. V. Pastukhova, Yu. G. Chabak, K. Kusumoto, and A. V. Efremenko, J. Friction Wear, 38 (1): 58 (2017). Crossref
  2. I. G. Papantoniou, A. P. Markopoulos, and D. E. Manolakos, Materials, 13: 1278 (2020). Crossref
  3. N. S. Mashovets, I. M. Pastukh, and S. M. Voloshko, Appl. Sur. Sci., 392: 356 (2017). Crossref
  4. M. O. Vasyliev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 37, No. 9: 1269 (2015). Crossref
  5. S.-W. Kim, J. K. Hong, Y.-S. Na, J.-T. Yeom, and S. Eon Kim, Mater. Des., 54: 814 (2014). Crossref
  6. W. J. Zhang, B. V. Reddy, and S. C. Deevi, Scr. Mat., 45: 645 (2001). Crossref
  7. V. A. Lavrenko, A. D. Panasyuk, and S. A. Firstov, Powder Metall. Met. Ceram., 42, Nos. 5–6: 291 (2003). Crossref
  8. S. Romankov, W. Sha, S. D. Kaloshkin, and K. Kaevitser, Surf. Coat. Technol., 201: 3235 (2006). Crossref
  9. N. Ergin, G. Yoruk, and O. Ozdemir, Acta Phys. Polonica A, 123: 245 (2013). Crossref
  10. S. Mridha, H. S. Ong, L. S. Poh, and P. Cheang, J. Mater. Process. Technol., 113: 516 (2001). Crossref
  11. M. A. Mũnoz-Morris, N. Calderón, I. Gutierrez-Urrutia, and D.G. Morris, Mater. Sci. Eng. A, 425: 131 (2006). Crossref
  12. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimov, Mater. Sci. Eng. A, 458: 253 (2007). Crossref
  13. B. N. Mordyuk and G. I. Prokopenko, J. Sound Vib., 308: 855 (2007). Crossref
  14. B. N. Mordyuk, M. O. Iefimov, G. I. Prokopenko, T. V. Golub, and M. I. Danylenko, Surf. Coat. Technol., 204: 1590 (2010). Crossref
  15. В. Ф. Мазанко, Д. С. Герцрикен, С. А. Бобырь, В. М. Миронов, Д. В. Миронов, Искровой разряд и диффузионные процессы в металлах (Киев: Наукова думка: 2014).
  16. Н. М. Чигринова, А. А. Кулешов, В. В. Нелаев, Электронная обработка материалов, № 2: 27 (2010).
  17. M. A. Vasylyev, B. N. Mordyuk, V. P. Bevz, S. M. Voloshko, and O. B. Mordiuk, Int. J. Surf. Sci. Eng., 14, No. 1: 1 (2020). Crossref
  18. B. N. Mordyuk, G. I. Prokopenko, K. E. Grinkevych, N. A. Piskun, and T. V. Popova, Surf. Coat. Technol., 309: 969 (2017). Crossref
  19. Б. М. Мордюк, С. М. Волошко, А. П. Бурмак, Д. С. Малахов, Металлофиз. новейшие технол., 42, № 7: 997 (2020). Crossref
  20. E. L. Huskins, B. Cao, and K. T. Ramesh, Mater. Sci. Eng. A, 527: 1292 (2010). Crossref
  21. B. N. Mordyuk, V. V. Silbershmidt, G. I. Prokopenko, Yu. V. Nesterenko, and M. O. Iefimov, Mater. Characterizations, 61: 1126 (2010). Crossref
  22. Z. Zhang and D. L.Chen, Scr. Mater., 54: 1321 (2006). Crossref
  23. B. N. Mordyuk, G. I. Prokopenko, Yu. V. Milman, M. O. Iefimov, K. E. Grinkevych, A. V. Sameljuk, and I. V. Tkachenko, Wear, 319: 84 (2014). Crossref
  24. P. Sahu, Intermetallics, 14: 180 (2006). Crossref
  25. A. H. Seikh, A. Mohammad, El-Sayed M. Sherif, and A. Al-Ahmari, Metals, 5: 2289 (2015). Crossref
  26. N. Birbilis and R. G. Buchheit, J. Electrochem. Soc., 152, Iss. 4: B140 (2005). Crossref
  27. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Surf. Eng., 34, No. 4: 324 (2018). Crossref
  28. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 103: 761 (2016). Crossref
  29. N. I. Khripta, O. P. Karasevska, and B. N. Mordyuk, J. Mater. Eng. Perform., 26, No. 11: 5446 (2017). Crossref