Processing math: 100%

Influence of Hydrogen on Plate Deformation during Formation of Gradient Alloy of Palladium with Hydrogen

O. M. Lyubimenko

Донецкий национальный технический университет, пл. Шибанкова, 2, 85300 Покровск, Украина

Получена: 06.05.2022; окончательный вариант - 13.06.2022. Скачать: PDF

In this work the study and analysis of video recording of bending experiment of pure palladium plate and plate of α-PdH0.0071 at 200°C with increasing hydrogen concentration in palladium by Δn = 0.00355i, where i = 1, 2, 3, 4 and time graded alloys α-PdH0.00355, α-PdH0.0071, α-PdH0.0105, α-PdH0.0142, α-PdH0.0177, α-PdH0.0213 H/Pd are obtained. It is experimentally established for the first time that at 200°C with increasing concentration by Δn = 0.00355H/Pd the maximum plate bends for the α-PdHn alloy are larger than those for the pure palladium plate and are almost completely reversed in the range from 0 to 0.16 mm for both plates. In the experiments it is first recorded that at 200°C when the maximum bending of the α-PdHn alloy plate is reached, a slowing down of the plate bending process is observed with reaching a plateau of duration in each experiment of 4 to 7 s. It is experimentally confirmed that at T = 200°C the physical nature of the appearance in the first seconds of the maximum bending of the plate is due to the formation of temporary gradient α-PdHn alloy with layers of a certain thickness that have other physical properties than pure palladium. And also, a change in the kinetics of hydrogen transport inside for the plate from the α-PdH0.0071 alloy, due to a change in the mechanism of distribution and occurrence of hydrogen-concentration stresses in the plate from the α-PdH0.0071 alloy is fixed during the formation of the maximum bend.

Ключевые слова: bending, hydrogen, palladium, α-PdHn gradient alloy, concentration.

URL: https://mfint.imp.kiev.ua/ru/abstract/v44/i07/0899.html

PACS: 62.20.-x, 64.80.-v, 66.30.-h, 68.43.-h, 81.05.Bx, 81.40.-z


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. Y. H. Lee, Y. Jang, D. H. Han, S. M. Lee, and S. S. Kim, J. Environmental Chemical Engineering, 9, Iss. 6: 106509 (2021). Crossref
  2. Zhengzhao Han, Ke Xu, Ningbo Liao, and Wei Xue, Int. J. Hydrogen Energy, 46, No. 46: 23715 (2021). Crossref
  3. Mostafa El-Shafie, Shinji Kambra, and Yukio Hayakawa, South African J. Chemical Engineering, 35: 118 (2021). Crossref
  4. V. A. Goltsov, Progress in Hydrogen Treatment of Materials (Donetsk: Kassiopeya Ltd.: 2001), p. 3.
  5. Zh. L. Glukhova, V. A. Goltsov, T. A. Schegoleva, R. V. Kotelva, and O. M. Lyubimenko, Int. J. Nuclear Hydrogen Production and Applications, 1, No. 4: 334 (2008). Crossref
  6. В. А. Гольцов, Е. Н. Любименко, Ж. Л. Глухова, Фізико-хімічна механіка матеріалів, 45, № 5: 55 (2009). Crossref
  7. О. М. Любименко, О. А. Штепа, Металлофиз. новейшие технол., 43, № 12: 1639 (2021). Crossref
  8. E. Э. Вике, Х. Бродовский, Водород в металлах (Ред. Г. Алефельд, И. Фёлькль) (Москва: Мир: 1981), т. 2, с. 91.
  9. А. И. Райченко, Математическая теория диффузии в приложениях (Киев: Наукова думка: 1981).
  10. E. P. Feldman, E. N. Lyubimenko, and K. V. Gumennyk, J. Applied Physics, 127, No. 24: 245104 (2020). Crossref