Surface Modification of Stainless Steel 40Х13 by Ultrasonic Impact Treatment in Various Atmospheres

A. P. Burmak$^{1}$, S. M. Voloshko$^{1}$, B. M. Mordyuk$^{1,2}$, V. I. Zakiev$^{1,3}$

$^{1}$Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», просп. Победы, 37, 03056 Киев, Украина
$^{2}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{3}$Национальный авиационный университет, просп. Любомира Гузара, 1, 03058 Киев, Украина

Получена: 11.07.2022. Скачать: PDF

Changes in microhardness, structural-phase state, degree of the lattice microstrains, level of residual compressive stresses and tribological properties of stainless steel 40Х13 (AISI 420) after ultrasonic impact treatment (UIT) of surface layers in air and inert media have been studied. The increase in the surface microhardness of the samples treated in argon and air reaches $\sim$ 2.4 times (HV100 = 5.8 GPa) and $\sim$ 2.8 times (HV100 = 6.9 GPa), respectively. The consequence of UIT in an inert environment is a decrease in the roughness parameters of the modified surface in contrast to the treatment performed in a chemically active environment (air). The latter leads to the formation of a more developed microrelief. The difference in the roughness characteristics is due to the mechanochemical oxidation of the air-UIT processed surface and deformation-induced formation of Fe$_{3}$O$_{4}$ and Cr$_{2}$O$_{3}$ oxides. The developed surface microrelief containing oxides, which increase hardness and can act as a solid lubricant, provides a significant reduction in the friction force as compared to the initial state and the surface processed in an inert environment.

Ключевые слова: stainless steel, surface morphology, deformation, stress, ultrasonic impact treatment.


PACS: 43.35.+d, 61.72.Ff, 81.65.-b, 81.40.Wx, 83.10.Tv

  1. M. O. Vasylyev, B. M. Mordyuk, S. M. Voloshko, and D. A. Lesyk, Prog. Phys. Metals, 22: 562 (2021). Crossref
  2. A. Amanov, I. S. Cho, Y. S. Pyoun, C. S. Lee, and I. G. Park, Wear, 286: 136 (2011). Crossref
  3. D. A. Lesyk, S. Martinez, B. N. Mordyuk, V. V. Dzhemelinskyi, A. Lamikiz, G. I. Prokopenko, K. E. Grinkevych, and I. V. Tkachenko, J. Mater. Eng. Perform., 27: 764 (2018). Crossref
  4. W. Li, Y. Wang, and M. F. Yan, J. Mater. Sci., 40: 5635 (2005). Crossref
  5. L. Zhou, G. Liu, Z. Han, and K. Lu, Scr. Mater., 58: 445 (2008). Crossref
  6. D. A. Lesyk, S. Martinez, B. N. Mordyuk, V. V. Dzhemelinskyi, A. Lamikiz, G. I. Prokopenko, Yu. V. Milman, and K. E. Grinkevych, Surf. Coat. Technol., 328: 344 (2017). Crossref
  7. Y. V. Milman, B. M. Mordyuk, K. E. Grinkevych, S. I. Chugunova, I. V. Goncharova, A. I. Lukyanov, and D. A. Lesyk, Prog. Phys. Met., 21: 554 (2020). Crossref
  8. А. А. Федоров, Д. А. Полонянкин, А. В. Линовский, Н. В. Бобко, А. И. Блесман, В. И. Дубовик, Динамика систем, механизмов и машин, 7, № 3: 99 (2019). Crossref
  9. A. Cherif, Y. Pyoun, and B. Scholtes, J. Mater. Eng. Performance, 19: 282 (2010). Crossref
  10. B. N. Mordyuk, Y. V. Milman, M. O. Iefimov, G. I. Prokopenko, V. V. Silberschmidt, M. I. Danylenko, and A. V. Kotko, Surf. Coat. Technol., 202: 4875 (2008). Crossref
  11. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimov, Mater. Sci. Eng., 458: 253 (2017). Crossref
  12. O. I. Zaporozhets, B. N. Mordyuk, N. A. Dordienko, V. A. Mykhailovsky, V. F. Mazanko, and O. P. Karasevskaya, Surf. Coat. Technol., 307: 693 (2016). Crossref
  13. I. B. Okipnyi, P. O. Maruschak, V. I. Zakiev, and V. S. Mocharskyi, J. Failure Analysis Prevention, 14: 668 (2014). Crossref
  14. D. A. Lesyk, S. Martinez, B. N. Mordyuk, V. V. Dzhemelinskyi, A. Lamikiz, G. I. Prokopenko, M. O. Iefimov, and K. E. Grinkevych, Wear, 462: 203494 (2020). Crossref
  15. X. Yang, X. Ling, and J. Zhou, Int. J. Fatigue, 61: 28 (2014). Crossref
  16. D. A. Lesyk, B. N. Mordyuk, V. V. Dzhemelinskyi, S. M. Voloshko, and A. P. Burmak, J. Mater. Eng. Performance, 30, No. 3: 1 (2022). Crossref
  17. R. A. Savrai and A. L. Osintseva, Mater. Sci. Eng.: A, 802: 140679 (2021). Crossref
  18. М. О. Васильєв, Б. М. Мордюк, С. І. Сидоренко, С. М. Волошко, А. П. Бурмак, Металлофиз. новейшие технол., 37, № 9: 1269 (2015). Crossref
  19. М. О. Васильєв, Б. М. Мордюк, С. М. Волошко, В. І. Закієв, А. П. Бурмак, Д.  В. Пефті, Металлофиз. новейшие технол., 42, № 3: 381 (2020). Crossref
  20. М. О. Васильєв, Б. М. Мордюк, С. І. Сидоренко, С. М. Волошко, А. П. Бурмак, Н. В. Франчік, Металлофиз. новейшие технол., 39, № 7: 905 (2017). Crossref
  21. V. Zakiev, A. Markovsky, E. Aznakayev, I. Zakiev, and E. Gursky, Proc. SPIE 5959, Medical Imaging (Congress on Optics and Optoelectronics) (September 23, 2005) (Poland, Warsaw: 2005), vol. 595916.
  22. А. П. Бурмак, М. О. Васильєв, В. І. Закієв, М. М. Ворон, С. М. Волошко, Металлофиз. новейшие технол., 44, № 6: 751 (2022). Crossref
  23. H. Nykyforchyn, V. Kyryliv, and O. Maksymiv, Nanoscale Research Letters, 12: 150 (2017). Crossref
  24. Б. М. Мордюк, О. О. Мікосянчик, Металлофиз. новейшие технол., 39, № 6: 795 (2017). Crossref
  25. C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry (2nd Ed.) (Prentice Hall: 2004).
  26. A. F. Holleman and E. Wiberg, Inorganic Chemistry (New York: Academic Press: 2001).
  27. K. Pekkan and Y. Gün, Nevşehir Bilim ve Teknoloji Dergisi, 7, No. 1: 32 (2018). Crossref
  28. М. А. Васильев, С. М. Волошко, Л. Ф. Яценко, Успехи физики металлов, 15, № 2: 79 (2014). Crossref