The Surface Structure Modification of Л63 Brass after Treatment with Ion Sputtering in a Helicon Discharge

E. M. Rudenko$^{1}$, M. Ye. Svavil’nyy$^{1}$, T. Yu. Kyrychok$^{2}$, V. Ye. Panarin$^{1}$, V. A. Bahlay$^{2,3}$, M. A. Skorik$^{1}$, V. H. Oliynyk$^{2}$, and M. V. Dyakin$^{1}$

$^{1}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{2}$Учебно-научный издательско-полиграфический институт Национального технического университета Украины «Киевский политехнический институт имени Игоря Сикорского», ул. Академика Янгеля, 1/37, 03056 Киев, Украина
$^{3}$Частное акционерное общество «Новокраматорский машиностроительный завод», ул. Олекса Тихого, 5, 84305 Краматорск, Украина

Получена: 09.06.2022; окончательный вариант - 11.07.2022. Скачать: PDF

A study of the ion treatment of rolled Л63 brass surface in a helicon discharge plasma flow in argon is conducted. It is found that argon ions with a high density provided by a helicon discharge not only intensively sputter the surface of brass, clean it of uncontrolled impurities, significantly increase the purity class of the brass surface, but also cause a significant modification of the surface. Depending on the ion etching time (10–45 min) and the current density (3.5–5.5 mA/cm$^{2}$), ordered highly oriented 3D ZnO nanostructures are formed on the brass surface. Nanocrystallites up to 70–90 nm are obtained in different modes. 3D ZnO nanostructures’ properties significantly depend on the processing modes. Synthesized ZnO nanocrystallites can play the role of transitional gradient layer during the further forming by physically vapour deposition protective coatings with high adhesive strength to the brass processed in the helicon discharge.

Ключевые слова: brass, zinc oxide, plasma technologies, intaglio printing, surface phenomena, adhesion resistance of coating, DLE, PVD, nanostructures, ZnO.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i02/0183.html

PACS: 52.50.Qt, 79.60.Jv, 81.40.-z


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. H. Deinhammer, F. Loos, D. Schwarzbach, and P. Fajmann, Proc. SPIE. Optical Security and Counterfeit Deterrence Techniques V, 5310 (2004).
  2. H. Deinhammer, D. Schwarzbach, R. Kefeder, and P. Fajmann, Proc. SPIE. Optical Security and Counterfeit Deterrence Techniques VI, 6075: 607503 (2006).
  3. J. Perrier, Method and System for Manufacturing Intaglio Printing Plates for the Production of Security Papers, Patent 20110058509 USA (Published March 24, 2011).
  4. А. Г. Гугля, И. М. Неклюдов, Успехи физ. мет., 6, № 3: 197 (2005). Crossref
  5. A. Guglya, I. Marchenko, D. Malykhin, and I. Neklyudov, Surf. Coat. Technol., 164: 286 (2003). Crossref
  6. Т. Ю. Киричок, В. А. Баглай, Технологія і техніка друкарства, 3: 15 (2019).
  7. E. Rudenko, T. Kyrychok, V. Panarin, M. Svavilnyi, D. Polotskyi, M. Skoryk, and A. Novytska, Proc. of SPIE. Fifteenth International Conference on Correlation Optics, 12126: 1212615 (2021).
  8. В. Ф. Семенюк, Э. М. Руденко, И. В. Короташ, Л. С. Осипов, Д. Ю. Полоцкий, К. П. Шамрай, В. В. Одиноков, Г. Я. Павлов, В. А. Сологуб, Металлофиз. новейшие технол., 33, № 2: 223 (2011).
  9. V. F. Semenyuk, V. F. Virko, I. V. Korotash, L. S. Osipov, D. Yu. Polotsky, E. M. Rudenko, and K. P. Shamrai, Problems of Atomic Science and Technology, 4: 179 (2013).
  10. A. M. Gabovich, V. F. Semeniuk, and N. I. Semeniuk, J. Phys. D: Appl. Phys., 54: 255301 (2021). Crossref
  11. F. F. Komarov, Langmuir, 12: 199 (1996). Crossref
  12. A. Agarwal, H. Gossmann, D. J. Eaglesham, L. Pelaz, S. B. Herner, D. C. Jacobson, and R. Simonton, Mater. Sci. Semiconductor Processing, 1: 17 (1998). Crossref
  13. E. Patrick Hopkins, Int. Scholarly Research Notices, 2013: 682586 (2013).
  14. I. Žutić, A. Matos-Abiague, B. Scharf, T. Zho, H. Dery, and K. Belashchenko, Solid-State Electronics, 155: 93 (2019). Crossref
  15. L. B. Begrambekov, A. M. Zakharov, A. A. Pustobajev, M. Suchańska, S. Kaluła, and V. Chodorek, Nucl. Instrum. Methods Phys. Res., Sect. B, 85, Iss. 1–4: 331 (1994). Crossref
  16. L. B. Begrambekov, A. M. Zakharov, and V. G. Telkovsky, Nucl. Instrum. Methods Phys. Res., Sect. B, 115, Iss. 1–4: 456 (1996). Crossref
  17. V. P. Krasovskyy, B. D. Kostyuk, I. I. Gab, N. A. Krasovskaya, and T. Stetsyuk, Powder Metallurgy and Metal Ceramics, 59: 134 (2020). Crossref
  18. I. I. Fabrikant, S. Eden, N. J. Mason, and J. Fedor, Adv. Atomic, Molecular, and Optical Physics, 66: 545 (2017). Crossref
  19. ISO 197-1:1983. Copper and Copper Alloys. Terms and Definitions. Part 1. Materials.
  20. ISO 2624:1990. Copper and Copper Alloys. Estimation of Average Grain Size.
  21. Е. М. Руденко, В. Є. Панарін, П. О. Киричок, М. Є. Свавільний, І. В. Короташ, Д. Ю. Полоцький, Р. Л. Тріщук, Металлофиз. новейшие технол., 40, № 8: 993 (2018).
  22. L. Schmidt-Mende and J. L. MacManus-Driscoll, Mater. Today, 10: 40 (2007). Crossref
  23. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys., 98: 041301 (2005). Crossref
  24. Paulina Sawicka-Chudy, Maciej Sibiński, Grzegorz Wisz, Elżbieta Rybak Wilusz, and Marian Cholewa, J. Phys: Conf. Series, 1033: 012002 (2018). Crossref
  25. K. L. Mittal and A. Pizzi, Handbook of Sealant Technology (CRC Press: 2020).
  26. L. Xu, B. Wei, W. Liu et al., Nanoscale Res. Lett., 8: 46 (2013). Crossref
  27. Chin-Ching Lin and San-Yuan Chen, Appl. Phys. Lett., 84: 5040 (2004). Crossref