Influence of Magnetron Sputtering Parameters on Mechanical and Tribological Properties of Carbon Nitride Coatings

N. V. Vigilianska$^{1}$, O. V. Volos$^{1}$, V. G. Zadoya$^{1}$, V. F. Gorban$^{2}$, V. I. Zakiev$^{3}$

$^{1}$Институт электросварки им. Е. О. Патона НАН Украины, ул. Казимира Малевича, 11, 03150 Киев, Украина
$^{2}$Институт проблем материаловедения им. И. Н. Францевича НАН Украины, ул. Омельяна Прицака, 3, 03142 Киев, Украина
$^{3}$Национальный авиационный университет, просп. Любомира Гузара, 1, 03058 Киев, Украина

Получена: 6.02.2023; окончательный вариант - 28.02.2023. Скачать: PDF

This work is devoted to investigation of mechanical and tribological properties of carbon nitride (CN$_{x}$) coatings deposited on the titanium IM125 and steel AISI321 substrates by the method of reactive magnetron sputtering of a graphite target at direct current in a mixture of gases argon/nitrogen. As shown, at pressure $p$ = 0.35 Pа, nitrogen concentration in a mixture of gases $C$ = 42-58%, substrate temperature $T_{substr}$ = 130°C, the highest values of hardness $H$ = 15/20 GPa, modulus of elasticity $E^{*}$ = 120-132 GPa, normalized hardness $H/E^{*}$ = 0.130-0.152, elastic deformation $\varepsilon_{es}$ = 4.03-4.6% are obtained, indicating increased ductility and wear resistance of the coating under friction. Wear-resistance testing conducted under dry friction by means of the ball-on-disc and ball-section methods show that high wear resistance is found in CN$_{x}$ coatings with the highest carbon ordering, and it is confirmed by high values of normalized hardness $H/E^{*}$ and $\varepsilon_{es}$. Testing in blood plasma of titanium IM125 samples with CN$_{x}$ coating in friction pair with chirulen yields low values of friction coefficient and wear intensity of chirulen equal to 0.079 and 0.65 mm/km, respectively.

Ключевые слова: reactive magnetron sputtering, carbon nitride coatings, microindenting, tribological properties, graphite target, biomedical compatibility.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i05/0603.html

PACS: 46.55.+d, 62.20.Qp, 68.60.Bs, 81.15.Cd, 81.40.Pq, 87.85.jj


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. A. Y. Liu and M. L. Cohen, Science, 245: 841 (1989). Crossref
  2. H. Dong, A. R. Oganov, Q. Zhu, and G.-R. Qian, Sci. Rep., 5: 9870 (1989).
  3. M. Aliofkhazraei, Diamond and Carbon Composites and Nanocomposites Hardness of Thin Films and the Influential Factors (London: IntechOpen: 2016).
  4. L. Dongguang, C. F. Ruan, P. Zhang, H. Ma, Y. Liang, and J. Tu, Mater. Charact., 178, No. 1 (2021).
  5. T. Hattori, N. Umehara, H. Kousaka, X. Deng, K. Manabe, and K. Hayashi, Procedia Manufacturing, 5: 1224 (2016). Crossref
  6. K. Adachi and K. Kato, Tribology of Diamond-Like Carbon Films, 339 (2008).
  7. S. Wei, T. Shao, and P. Ding, Diamond Relat. Mater., 19, Nos. 5-6: 648 (2010). Crossref
  8. S. Wei, T. Shao, and P. Ding, Appl. Surf. Sci., 257, No. 24: 10333 (2011). Crossref
  9. X. Deng, T. Hattori, N. Umehara, H. Kousaka, K. Manabe, and K. Hayashi, Thin Solid Films, 621: 12 (2017). Crossref
  10. X. Liu, N. Umehara, T. Tokoroyama, and M. Murashima, Tribol. Int., 131: 102 (2018). Crossref
  11. F. Z. Cui, X. L. Qing, D. J. Li, and J. Zhao, Surf. Coat. Technol., 200, Nos. 1-4: 1009 (2005). Crossref
  12. M. Zhao, D. Li, Y. Zhang, M. Guo, X. Deng, H. Gu, and R. Wan, Sci. China: Life Sci., 55, No. 4: 343 (2012). Crossref
  13. T. Berlind, N. Hellgren, M. P. Johansson, and L. Hultman, Surf. Coat. Technol., 141, Nos. 2-3: 145 (2001). Crossref
  14. Yu. Borysov, O. Volos, N. Vihilianska, V. Zadoya, and V. Strelchuk, The Paton Welding Journal, 9: 15 (2022). Crossref
  15. S. Shejkin, A. Rutkovskij, I. Rostockij, D. Efrosinin, and V. Bondar, Fiz.-Khim. Mekh. Mater., 48, No. 1: 106 (2012).