Effect of Modulation Period on the Thermally-Induced Solid-State Reactions in Ni/Ti Thin Films

I. O. Kruhlov, N. V. Franchik, S. M. Voloshko, A. K. Orlov

Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», просп. Победы, 37, 03056 Киев, Украина

Получена: 06.06.2023; окончательный вариант - 24.06.2023. Скачать: PDF

In this work, we have studied the structure evolution of Ni/Ti layered stacks with a modulation period of 30 nm and 15 nm (total thickness of the stack is of 60 nm) deposited by RF magnetron sputtering onto $p$-Si (001) substrate upon vacuum annealing up to 700°C. As found based on the XRD, SIMS and four-point probe resistivity measurements’ data, the diffusion-induced reactions in both stacks occur through the stages of metals’ intermixing, amorphization and formation of intermetallic Ni$_{x}$Ti phases. The application of a smaller modulation period leads to the more intense metals’ intermixing, which results in the shift of the structural transitions onset to the lower temperatures. However, the modulation period does not influence the temperature range of amorphization, which is of $\cong$ 38°C for both stacks.

Ключевые слова: thin films, solid-state reactions, diffusion, crystal structure, amorphization.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i07/0843.html

PACS: 66.30.Lw, 68.35.Fx, 68.55.Ln, 72.15.-v, 81.15.Cd, 81.40.Cd, 82.80.Ms


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. B. Reddy, Results in Physics, 17: 103075 (2020). Crossref
  2. J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, Mater. Design, 56: 1078 (2014). Crossref
  3. J. J. Gill, D. T. Chang, L. A. Momoda, and G. P. Carman, Sensors and Actuators A: Physical, 93, No. 2: 148 (2001). Crossref
  4. A. Kumar, D. Singh, and D. Kaur, Surf. Coat. Technol., 203, No. 12: 1596 (2009). Crossref
  5. H. Cho, H. Y. Kim, and S. Miyazaki, Sci. Technol. Adv. Mater., 6, No. 6: 678 (2005). Crossref
  6. T. Lehnert, S. Tixier, P. Böni, and R. Gotthardt, Mater. Sci. Eng. A, 273: 713 (1999). Crossref
  7. A. J. Cavaleiro, R. J. Santos, A. S. Ramos, and M. T. Vieira, Intermetallics, 51: 11 (2014). Crossref
  8. R. Gupta, M. Gupta, S. K. Kulkarni, S. Kharrazi, A. Gupta, and S. M. Chaudhari, Thin Solid Films, 515, No. 4: 2213 (2006). Crossref
  9. A. J. Cavaleiro, A. S. Ramos, R. M. S. Martins, F. B. Fernandes, J. Morgiel, C. Baehtz, and M. T. Vieira, J. Alloys Comp., 646: 1165 (2015). Crossref
  10. B. M. Clemens, Phys. Rev. B, 33, No. 11: 7615 (1986). Crossref
  11. P. Bhatt, A. Sharma, and S. M. Chaudhari, J. Appl. Phys., 97: 043509 (2005). Crossref
  12. A. K. Orlov, I. O. Kruhlov, I. E. Kotenko, and S. M. Voloshko, Metallofiz. Noveishie Tekhnol., 45, No. 1: 55 (2023). Crossref
  13. T. Duguet, F. Senocq, L. Aloui, F. Haidara, D. Samélor, D. Mangelinck, and C. Vahlas, Surf. Interface Analysis, 44, No. 8: 1162 (2012). Crossref
  14. F. Smits, Bell System Technical J., 37, No. 3: 711 (1958). Crossref
  15. H. Aboulfadl, F. Seifried, M. Stueber, and F. Muecklich, Mater. Lett., 236: 92 (2019). Crossref
  16. S. Petrović, D. Peruško, M. Mitrić, J. Kovac, G. Dražić, B. Gaković, K. P. Homewood, and M. Milosavljević, Intermetallics, 25: 27 (2012). Crossref
  17. W. L. Johnson, Prog. Mater. Sci., 30, No. 2: 81 (1986). Crossref
  18. S. V. Divinski, I. Stloukal, L. Kral, and C. Herzig, Defect and Diffusion Forum, 289–292: 377 (2009). Crossref
  19. L. Scotti, N. Warnken, and A. Mottura, Acta Mater., 177: 68 (2019). Crossref
  20. M. K. Rahman, F. Nemouchi, T. Chevolleau, P. Gergaud, and K. Yckache, Mater. Sci. Semiconductor Processing, 71: 470 (2017). Crossref
  21. S. Lundgaard, S. H. Ng, D. Cahill, J. Dahlber, D. Ruan, N. Cole, P. Stoddart, and S. Juodkazis, Technologies, 7, No. 4: 75 (2019). Crossref
  22. E. Bourjot, M. Putero, C. Perrin-Pellegrino, P. Gergaud, M. Gregoire, F. Nemouchi, and D. Mangelinck, Microelectronic Eng., 120: 163 (2014). Crossref