Sintered Al–Si–Ni Alloy: Structure and Properties. I. Powder Obtaining

G. A. Bagliuk$^{1}$, T. О. Monastyrska$^{2}$, V. V. Kaverinsky$^{1}$, V. P. Bevz$^{2}$, V. K. Nosenko$^{2}$, I. M. Kirian$^{2}$, D. L. Pakula$^{2}$, V. V. Kyrylchuk$^{2}$, A. M. Lakhnik$^{2}$, A. D. Rud$^{2}$

$^{1}$Институт проблем материаловедения им. И. Н. Францевича НАН Украины, ул. Омельяна Прицака, 3, 03142 Киев, Украина
$^{2}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина

Получена: 09.08.2023; окончательный вариант - 11.08.2023. Скачать: PDF

The work is aimed at the development of a new sintered aluminium alloy with a low temperature coefficient of linear expansion that opens fundamentally new opportunities for solving the modern needs of domestic machine-building and instrument-making enterprises in light materials with special physical properties. Phase composition, structure and properties of cast aluminium alloys Al–Si–Ni with different contents of silicon and nickel, as well as powders obtained by grinding rapidly-quenched metal ribbons of these alloys in a high-energy ball mill are studied using various methods of structural analysis. The obtained values of the coefficient of linear expansion of the studied alloys in the cast state are significantly lower than those of pure aluminium, and they amount to $\cong (11-15)\cdot 10^{-6} K^{-1}$. The method of obtaining a powder of a rapidly-crystallized alloy by manufacturing a rapidly-quenched metal ribbons using melt spinning followed by its dispersion in a high-energy ball mill is proposed for the fabrication of finely-dispersed powder and subsequent hot pressing.

Ключевые слова: sintered aluminium alloy, Al–Si–Ni, powder metallurgy, compaction, alloying, melt spinning, rapidly-quenched ribbons, coefficient of linear expansion.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i08/0951.html

PACS: 61.66.Dk, 65.40.De, 81.20.Ev, 81.20.Wk, 81.40.Cd, 81.40.Vw, 81.70.Pg


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. O. E. Osintsev, Metal Sci. Heat Treatment, 40: 172 (1998). Crossref
  2. Aluminium Alloys: New Trends in Fabrication and Applications (Ed. Zaki Ahmad) (Intechopen: 2012).
  3. V. V. Vasenyev, Razrabotka Kompozitsionnogo Materiala na Osnove Sistemy Al–Si–Ni s Nizkim Znacheniem TKLR i Tekhnologii Polucheniya Polufabrikatov dlya Izdeliy Raketno-Kosmicheskoy Tekhniki [Development of a Composite Material Based on the Al–Ci–Ni System with a Low CTE Value and Technology for Producing Rocket and Space Technology Products] (Thesis of Disser. for Cand. Techn. Sci.) (Moskva: MAI: 2017) (in Russian).
  4. Elwin L. Rooy, Introduction to Aluminum and Aluminum Alloys (ASM International: 1990).
  5. O. E. Osintsev and S. L. Nikitin, High-Strength Corrosion-Resistant Cast Aluminum Alloys of the Al–Mg System with a High Silicon Content (MATI: 2008).
  6. Temperature Coefficient of Linear Expansion of Steel (Online Resource) http://thermalinfo.ru/svojstva-materialov/metally-i-splavy/temperaturnyj-koeffitsient-linejnogo-rasshireniya-stali
  7. G. V. Samsonov, Handbook of the Physicochemical Properties of the Elements (New York: Springer: 1968). Crossref
  8. T. Bedo, B. Varga, D. Cristea, A. Nitoi, A. Gatto, E. Bassoli, G. Bulai, I.-L. Velicu, I. Ghiuta, S. Munteanu, M. A. Pop, C. Gabor, M. Cosnita, L. Parv, and D. Munteanu, Metals, 9, Iss. 5: 483 (2019). Crossref
  9. X. M. Pan, Z. P. Jin, and J. Zhao, Metallurgical Mater. Trans. A, 36: 1757 (2005). Crossref
  10. W. Xiong, Y. Du, R.-X. Hu, J. Wang, W.-W. Zhang, P. Nash, and X.-G. Lu, Int. J. Mater. Research, No. 6: 598 (2008). Crossref
  11. N. A. Belov, S. V. Savchenko, and A. V. Khavan, Fazovyy Sostav i Struktura Siluminov [Phase Composition and Structure of Silumins] (MISiS: 2008) (in Russian).
  12. V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Amsterdam: Elsevier: 2007). Crossref