Multifactor Empirical Models of Energy of Low-Frequency and Toothed Oscillations of the Dynamic Component of Torque on the Bit

V. M. Moysyshyn$^{1}$, A. P. Ivasyutyn$^{1}$, L. V. Borysevych$^{2}$, O. M. Vytvyts’ka$^{1}$

$^{1}$Ивано-Франковский национальный технический университет нефти и газа, ул. Карпатская, 15, 76019 Ивано-Франковск, Украина
$^{2}$Прикарпатский национальный университет имени Василия Стефаника, ул. Шевченко, 57, 76018 Ивано-Франковск, Украина

Получена: 06.04.2023; окончательный вариант - 13.04.2023. Скачать: PDF

In order to establish multifactorial empirical energy models of low-frequency ($E_{НЧК}$) and toothed ($E_{ЗК}$) oscillations of the dynamic component of the torque on the bit, experimental studies are conducted at the stand of the Ivano-Frankivsk National State University of Oil and Gas, using the method of rational planning of experiments. According to this method, the combination of variable factors, which include the axial static load $F_{ст}$, bit rotation frequency $n$, stiffness $C$, and damping coefficient $\beta$ of the drilling tool, occurs only once. The studied parameter is the amplitude value of the dispersion (energy) at local maxima, which are fixed on the low-frequency and jagged fluctuations of the spectral density (energy spectrum) of the internal structure of the dynamic component. General multidimensional functions are represented by the product of individual dependences on variable factors: $E_{НЧК} = B_{ср}f(n)f(F_{ст})f(C)f(\beta)$ and $E_{ЗК} = B_{ср}f(n)f(F_{ст})f(C)f(\beta)$, where $B_{ср}$ is the average value of the numerical coefficient for the set of all experiments. Constant factors during the planned experiment are both the type and the diameter of the three-layer bit and the consumption of flushing fluid (water). The planned factorial experiment is carried out in blocks of sandstone of the Horodyshche strata with a stamp hardness of 1440 MPa. According to the results of the experiment, the equations of multifactor empirical models of energy $E_{НЧК}$ and $E_{ЗК}$ fluctuations of the dynamic component of the torque on the bit are constructed, and the influence of external independent factors on this energy is analysed.

Ключевые слова: steel bit, empirical model, energy of a random process, spectral density, energy of low-frequency oscillations of the torque dynamic component on the bit, energy of toothed oscillations of the dynamic component of the torque on the bit, variable factor.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i10/1205.html

PACS: 07.10.-h, 46.40.-f, 46.50.+a, 62.20.M-, 62.20.Qp, 81.40.Np, 81.70.Bt


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. S. Lashari, A. Takbiri-Borujeni, and E. Fathi, J. Petrol. Explor. Prod. Technol., 9: 2747 (2019). Crossref
  2. C. Sridharan and G. Suresh Kumar, Int. J. Math. Eng. Management Sci., 5: 381 (2020). Crossref
  3. Y. Xu, H. Zhang, and Z. Guan, Energies, 14: 229 (2021). Crossref
  4. V. M. Moisyshyn, M. V. Lyskanych, L. V. Borysevych, N. B. Kolych, and R. A. Zhovniruk, Metallofiz. Noveishie Tekhnol., 41, No. 8: 1087 (2019) (in Ukrainian). Crossref
  5. A. S. Velichkovich and T. M. Dalyak, Chem. Petroleum Eng., 51: 188 (2015). Crossref
  6. A. I. Riznychuk, Ya. M. Famyak, V. V. Fedoriv, V. M. Charkovskyi, R. O. Deineha, and R. B. Stetsiuk, 15th Int. Conf. Monitoring of Geological Processes and Ecological Condition of the Environment (Nov. 17–19, 2021) (Kyiv: 2021).
  7. I. Kessai, S. Benammar, M. Z. Doghmane, and K. F. Tee, Appl. Sci., 10: 6523 (2020). Crossref
  8. V. M. Moisyshyn and O. O. Slabyi, Metallofiz. Noveishie Tekhnol., 40, No. 4: 541 (2018) (in Ukrainian). Crossref
  9. A. S. Velichkovich, I. I. Popadyuk, and V. M. Shopa, Chem. Petroleum Eng., 46, Nos. 9–10: 518 (2011). Crossref
  10. K. G. Levchuk, V. M. Moisyshyn, and I. V. Tsidylo, Metallofiz. Noveishie Tekhnol., 38, No. 12: 1655 (2016) (in Ukrainian). Crossref
  11. H. Tong and Y. Shao, Appl. Sci., 12, No. 6: 3145 (2022). Crossref
  12. O. Vlasiy, V. Mazurenko, L. Ropyak, and A. Rogal, Eastern-European J. Enterprise Technol., 1, No. 7 (85): 25 (2017). Crossref
  13. J. Grydzhuk, I. Chudyk, A. Velychkovych, and A. Andrusyak, Eastern-European J. Enterprise Technol., 1, No. 7 (97): 6 (2019). Crossref
  14. O. Bazaluk, A. Velychkovych, L. Ropyak, M. Pashechko, T. Pryhorovska, and V. Lozynskyi, Energies, 14, No. 14: 4198 (2021). Crossref
  15. Wei Liu and Deli Gao, Int. J. Refractory Metals Hard Mater., 98: 105537 (2021). Crossref
  16. L. Ya. Ropyak, T. O. Pryhorovska, and K. H. Levchuk, Prog. Phys. Met., 21, No. 2: 274 (2020). Crossref
  17. R. K. Abbas, Eng. Failure Analysis, 90: 554 (2018). Crossref
  18. A. Slipchuk, R. Jakym, V. Lebedev, and E. Kurkchi, Advanced Manufacturing Processes II (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, A. Grabchenko, I. Pavlenko, M. Edl, I. Kuric, and P. Dasic) (Springer: 2021), p. 443.
  19. R. S. Yakym and D. Yu. Petryna, Metallofiz. Noveishie Tekhnol., 42, No. 5: 731 (2020). Crossref
  20. L. Ropyak, I. Schuliar, and O. Bohachenko, Eastern-European J. Enterprise Technol., 1, No. 5 (59): 53 (2016) (in Ukrainian).
  21. C. Wang, X. Li, Y. Li, W. Xu, and W. Liao, Shock and Vibration, 2021: 6666767 (2021). Crossref
  22. O. Bazaluk, O. Slabyi, V. Vekeryk, A. Velychkovych, L. Ropyak, and V. Lozynskyi, Energies, 14, No. 12: 3514 (2021). Crossref
  23. C. Teodoriu and O. Bello, Energies, 14: 4499 (2021). Crossref
  24. L. Ropyak, T. Shihab, A. Velychkovych, V. Bilinskyi, V. Malinin, and M. Romaniv, Ceramics, 6: 146 (2023). Crossref
  25. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, and L. Ropyak, Materials, 15, No. 14: 5074 (2022). Crossref
  26. V. I. Dzyuba and Yu. M. Danil’chenko, Sov. Eng. Research, 6, No. 12: 30 (1986).
  27. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Eng., 39: 148 (2012). Crossref
  28. P. Prysyazhnyuk, M. Molenda, T. Romanyshyn, L. Ropyak, L. Romanyshyn, and V. Vytvytskyi, Acta Montanistica Slovaca, 27, No. 3: 685 (2022).
  29. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplyanchenko, N. S. Yevtushenko, and V. O. Herasymenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018).
  30. V. M. Holubets, M. I. Pashechko, K. Dzedzic, J. Borc, and A. V. Tisov, J. Friction Wear, 41, No. 5: 443 (2020). Crossref
  31. M. Zeng, Y. Zhou, and Y. Ma, Adv. Mech. Eng., 10, No. 5: 1 (2018).
  32. V. Kotsyubynsky, L. Shyyko, T. Shihab, P. Prysyazhnyuk, V. Aulin, and V. Boichuk, Mater. Today: Proc., 35: 538 (2019). Crossref
  33. V. Kosarchuk, M. Chausov, A. Pylypenko, V. Tverdomed, P. Maruschak, and V. Vasylkiv, Lubricants, 10, No. 4: 64 (2022). Crossref
  34. Yu. M. Danil’chenko, Sov. Eng. Research, 7, No. 7: 61 (1987).
  35. A. Krivosheya, J. Danilchenko, M. Storchak, and S. Pasternak, Mechanisms Machine Sci., 34: 425 (2016). Crossref
  36. D. Wheeler, Lubricants, 6, No. 3: 84 (2018). Crossref
  37. Y. Wang, C. Qian, L. Kong, Q. Zhou, and J. Gong, Appl. Sci., 10, No. 8: 2669 (2020). Crossref
  38. O. Onysko, L. Borushchak, V. Kopei, T. Lukan, I. Medvid, and V. Vryukalo, New Technologies, Development and Applications III (Ed. I. Karabegović) (Springer: 2020), p. 720. Crossref
  39. T. Pryhorovska and L. Ropyak, Proc. Int. Conf. Adv. Optoelectronics Lasers (Sept. 6–8, 2019, Sozopol), p. 493.
  40. O. Onysko, V. Panchuk, V. Kopei, Y. Havryliv, and I. Schuliar, J. Phys.: Conf. Series, 1781: 012028 (2021). Crossref
  41. L. Ropyak, V. Vytvytskyi, A. Velychkovych, T. Pryhorovska, and M. Shovkoplias, IOP Conf. Series: Mater. Sci. Eng., 1018: 012014 (2021). Crossref
  42. V. Kopei, O. Onysko, C. Barz, P. Dašić, and V. Panchuk, Machines, 11, No. 2: 263 (2023). Crossref
  43. I. Shatskyi, L. Ropyak, and A. Velychkovych, Eng. Solid Mechan., 8, No. 4: 301 (2020). Crossref
  44. Y. Y. Striletskyi, S. I. Melnychuk, V. M. Gryga, and O. P. Pashkevych, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, No. 3: 19 (2020). Crossref
  45. L. S. Saakiyan, A. P. Efremov, L. Ya. Ropyak, and A. V. Gorbatskii, Sov. Mater. Sci., 23, No. 3: 267 (1987). Crossref
  46. L. S. Saakiyan, A. P. Efremov, and L. Ya. Ropyak, Protection of Metals, 25, No. 2: 185 (1989).
  47. Y. L. Ivanytskyj, T. M. Lenkovskiy, Y. V. Molkov, V. V. Kulyk, and Z. A. Duriagina, Archives Mater. Sci. Eng., 82, No. 2: 49 (2016). Crossref
  48. V. Tyrlych and V. Moisyshyn, Mining of Mineral Deposits, 13, No. 3: 127 (2019). Crossref
  49. M. Bembenek, T. Mandziy, I. Ivasenko, O. Berehulyak, R. Vorobel, Z. Slobodyan, and L. Ropyak, Sensors, 22, No. 19: 7600 (2022). Crossref
  50. I. P. Shatskii, J. Appl. Mech. Technol. Phys., 30, No. 5: 828 (1989). Crossref
  51. T. O. Pryhorovska, Machining Sci. Technol., 21, No. 1: 37 (2017). Crossref
  52. D. A. Panevnik and A. S. Velichkovich, Neftyanoye Khozyaystvo, 2017, No. 1: 70 (2017) (in Russian).
  53. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15: 83 (2022). Crossref
  54. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplyanchenko, N. S. Yevtushenko, and V. O. Herasymenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018).
  55. S. Prakash and A. Mukhopadhyay, Int. J. Mining, Reclamation and Environment, 34, No. 2: 101 (2020). Crossref
  56. S. I. Kryshtopa, D. Yu. Petryna, I. M. Bogatchuk, I. B. Prun’ko, and V. M. Mel’nyk, Alloying Mater. Sci., 53, No. 3: 351 (2017). Crossref
  57. O. Ivanov, P. Prysyazhnyuk, D. Lutsak, O. Matviienkiv, and V. Aulin, Management Systems in Production Eng., 28, No. 3: 178 (2020). Crossref
  58. T. M. Radchenko, O. S. Gatsenko, V. V. Lizunov, and V. A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020).
  59. P. Prysyazhnyuk, R. Bishchak, S. Korniy, M. Panchuk, and V. Kaspruk, CEUR Workshop Proc., 3039: 300 (2021).
  60. K. H. Levchuk, T. M. Radchenko, and V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021) (in Ukrainian).
  61. Ya. Kusyi, V. Stupnytskyy, O. Onysko, E. Dragašius, S. Baskutis, and R. Chatys, Eksploatacja i Niezawodność, 24, No. 4: 655 (2022). Crossref
  62. Y. M. Kusyi and A. M. Kuk, J. Phys.: Conf. Series, 1426, No. 1: 012034 (2020). Crossref
  63. V. I. Lavrinenko, G. D. Il’nyts’ka, and V. V. Smokvyna, J. Superhard Mater., 33, No. 4: 261 (2011). Crossref
  64. V. B. Kopei, O. R. Onysko, and V. G. Panchuk, J. Phys.: Conf. Ser., 1426, No. 1: 012033 (2020). Crossref
  65. P. Prysyazhnyuk, D. Lutsak, L. Shlapak, V. Aulin, L. Lutsak, L. Borushchak, and T. Shihab, Eastern-European J. Enterprise Technol., 6, No. 12: 43 (2018). Crossref
  66. I. P. Shatskyi, M. V. Makoviichuk, and A. B. Shcherbii, Shell Structures: Theory and Applications (Eds. W. Pietraszkiewicz and W. Witkowski) (London: CRC Press: 2017), vol. 4, p. 594.
  67. L. Ropyak and V. Ostapovych, Eastern-European J. Enterprise Technol., 2, No. 5 (80): 50 (2016) (in Ukrainian). Crossref
  68. I. P. Shatskyi, L. Ya. Ropyak, and M. V. Makoviichuk, Strength Mater., 48, No. 5: 726 (2016). Crossref
  69. I. P. Shatskyi, V. V. Perepichka, and L. Y. Ropyak, Metallofiz. Noveishie Tekhnol., 42, No. 1: 69 (2020) (in Ukrainian). Crossref
  70. T. O. Pryhorovska, S. S. Chaplinskiy, and I. O. Kudriavtsev, Petroleum Exploration and Development, 42, No. 6: 812 (2015). Crossref
  71. K. G. Levchuk, SOCAR Proc., No. 2: 23 (2017). Crossref
  72. V. Moisyshyn, I. Voyevidko, and V. Tokaruk, Mining of Mineral Deposits, 14, No. 3: 128 (2020). Crossref
  73. R. M. Tatsiy, O. Y. Pazen, S. Y. Vovk, L. Y. Ropyak, and T. O. Pryhorovska, J. Serbian Society for Computational Mechanics, 13, No. 2: 36 (2019). Crossref
  74. O. Vytyaz, I. Chudyk, and V. Mykhailiuk, New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining (Eds. P. Kharlashin, R. Kuzemko, and V. Sinelnikov) (CRC Press: 2015), p. 591. Crossref
  75. M. Dutkiewicz, A. Velychkovych, I. Shatskyi, and V. Shopa, Materials, 15, No. 13: 4671 (2022). Crossref
  76. A. S. Velichkovich, Chem. Petrol. Eng., 41: 544 (2005). Crossref
  77. A. A. Bedzir, I. P. Shatskii, and V. M. Shopa, Int. Appl. Mech., 31, No. 5: 351 (1995). Crossref
  78. I. Yo. Popadyuk, I. P. Shats’kyi, V. M. Shopa, and A. S. Velychkovych, J. Math. Sci., 215, No. 2: 243 (2016). Crossref
  79. V. M. Shopa, I. P. Shatskii, and I. I. Popadyuk, Sov. Eng. Research, 9, No. 3: 42 (1989).
  80. I. P. Shats’kyi, V. M. Shopa, and A. S. Velychkovych, Strength Mater., 53: 277 (2021). Crossref
  81. V. Royzman, I. Drach, and A. Bubulis, 21st Int. Sci. Conf.: Mechanika (2016), p. 222.
  82. V. Moisyshyn and K. Levchuk, Mining of Mineral Deposits, 10, No. 3: 65 (2016). Crossref
  83. K. G. Levchuk, Metallofiz. Noveishie Tekhnol., 40, No. 5: 701 (2018) (in Ukrainian).
  84. V. Moisyshyn and K. Levchuk, Oil Gas Sci. Technol., 72, No. 5: 27 (2017). Crossref
  85. I. P. Shatskii and V. V. Perepichka, J. Appl. Mech. Techn. Phys., 54, No. 6: 1016 (2013). Crossref
  86. I. Shatskyi and V. Perepichka, Dynamical Systems in Applications (Ed. J. Awrejcewicz) (Springer: 2017), p. 335. Crossref
  87. I. Shatskyi, V. Perepichka, and M. Vaskovskyi, Theor. Appl. Mech., 48, No. 1: 29 (2021). Crossref
  88. M. Dutkiewicz, T. Dalyak, I. Shatskyi, T. Venhrynyuk, and A. Velychkovych, Appl. Sci., 11, No. 22: 10676 (2021). Crossref
  89. I. P. Shats’kyi and A. B. Struk, Strength Mater., 41, No. 5: 548 (2009). Crossref
  90. A. S. Velychkovych, A. V. Andrusyak, T. O. Pryhorovska, and L. Y. Ropyak, Oil Gas Sci. Technol., 74: 2019039 (2019). Crossref
  91. I. I. Vytvytskyi, M. V. Seniushkovych, and I. P. Shatskyi, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 28, No. 5: 29 (2017).
  92. I. Shatskyi, I. Vytvytskyi, M. Seniushkovych, and A. Velychkovych, IOP Conf. Series: Mater. Sci. Eng., 564: 012073 (2019). Crossref
  93. I. Shatskyi, A. Velychkovych, I. Vytvytskyi, and M. Seniushkovych, Eng. Solid Mechanics, 7, No. 4: 355 (2019). Crossref
  94. C. Liao, B. Balachandran, M. Karkoub, and Y. L. Abdel-Magid, J. Vibration Acoustic, 133, No. 4: 041008 (2011). Crossref
  95. Sunit K. Gupta and Pankaj Wahi, J. Sound Vibration, 375: 332 (2016). Crossref
  96. M. Moisyshyn, B. Borysevych, and R. Shcherbiy, Mining of Mineral Deposits (Eds. G. Pivnyak, V. Bondarenko, I. Kovalevs’ka, and M. Illiashov) (CRC Press: 2013), p. 359. Crossref
  97. V. M. Moysyshyn, M. V. Lyskanych, L. V. Borysevych, and R. A. Zhovniruk, Metallofiz. Noveishie Tekhnol., 42, No. 12: 1729 (2020). Crossref
  98. V. M. Moysyshyn, M. V. Lyskanych, L. V. Borysevych, O. Yu. Vytyaz, and I. I. Voznyi, Metallofiz. Noveishie Tekhnol., 43, No. 5: 689 (2021) (in Ukrainian). Crossref
  99. V. M. Mojsyshyn, O. M. Lyskanych, and A. I. Mas’ovs’kyj, Precarpathian Bulletin of the Shevchenko Scientific Society, No. 1 (29): 228 (2015) (in Ukrainian).
  100. Guangjian Dong and Ping Chen, Shock and Vibration, 2016: 7418635 (2016). Crossref
  101. D. A. Castello and T. G. Ritto, J. Sound Vibration, 547: 117537 (2023). Crossref
  102. F. F. Real, D. M. Lobo, T. G. Ritto, and F. A. Pinto, J. Petroleum Sci. Eng., 170: 755 (2018). Crossref
  103. V. I. Gulyaev, S. N. Khudolii, and O. V. Glushakova, Strength Mater., 41: 613 (2009). Crossref
  104. M. Kapitaniak, V. Vaziri, J. P. Chávez, and M. Wiercigroch, Mechanical Systems and Signal Processing, 100: 454 (2018). Crossref
  105. Guangjian Dong and Ping Chen, Shock and Vibration, 2016: 7418635 (2016). Crossref
  106. V. M. Moisyshyn, M. V. Lyskanych, R. A. Zhovniruk, and Ye. P. Majkovych, Precarpathian Bulletin of the Shevchenko Scientific Society, No. 1 (53): 81 (2019) (in Ukrainian). Crossref
  107. V. M. Moisyshyn, B. D. Borysevych, Yu. L. Havryliv, and S. A. Zinchenko, Stiykist’ i Kolyvannya Buryl’noyi Kolony (Ivano-Frankivsk: Lileya-NV: 2013) (in Ukrainian).
  108. V. M. Mojsyshyn, A. P. Ivasjutyn, V. R. Procjuk, and I. I. Voznyj, Precarpathian Bulletin of the Shevchenko Scientific Society, No. 1 (62): 75 (2022) (in Ukrainian).
  109. V. M. Mojsyshyn and A. P. Ivasjutyn, Komp’yuterna Programa ‘Vyznachennya Empirychnykh Rivnyan’ Regresiy (Programa ‘App. 1’)’, Svidotstvo pro Reyestratsiyu Avtors’kogo Prava na Tvir No. 115868 (January 17, 2023) (in Ukrainian).