Influence of Temperature on the Structure of Aluminium-Based Melts

O. S. Roik$^{1}$, D. S. Kanibolotsky$^{2}$, V. P. Kazimirov$^{1}$, A. M. Verkhovliuk$^{2}$, O. M. Yakovenko$^{1}$, O. A. Shcheretskiy$^{2}$, R. A. Sergiienko$^{2}$, Ye. H. Byba$^{3}$

$^{1}$Киевский национальный университет имени Тараса Шевченко, ул. Владимирская, 60, 01033 Киев, Украина
$^{2}$Физико-технологический институт металлов и сплавов НАН Украины, бульв. Академика Вернадского, 34/1, 03142 Киев, Украина
$^{3}$Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», просп. Победы, 37, 03056 Киев, Украина

Получена: 29.12.2022; окончательный вариант - 12.01.2023. Скачать: PDF

Six alloys of the Al-Cu-Ti-Fe system are smelted. The alloys’ composition varies in the following ranges [wt.%]: 5.1-6.1% Cu, 0.05-0.32% Ti, 0.06-0.19% Fe. The alloys are investigated in the liquid state by the high-temperature x-ray diffraction method in a helium environment at 700°С and 1000°С. Structure factors and pair distribution functions are calculated from the measured scattering curves. In turn, the numbers of atoms in the first co-ordination sphere (co-ordination numbers) are determined from the pair-distribution curves. Models of the melt structure are designed using the inverse Monte Carlo method in such a way to correspond maximally to experimentally determined structure-factor curves. Partial structure factors and pair distribution functions for Al-Al, Al-Cu and Al-Ti atomic pairs as well as co-ordination numbers for atoms of different kinds are calculated from the obtained models. The constructed models are divided into Delaunay simplexes, and polytetrahedral atomic clusters of the icosahedral type are defined. It is determined that the copper content in such clusters is 3-4 times higher than in the homogeneous melt.

Ключевые слова: aluminium alloys, melts, clusters, microstructure, x-ray diffraction, inverse Monte Carlo method.

URL: https://mfint.imp.kiev.ua/ru/abstract/v45/i11/1237.html

PACS: 02.70.Uu, 61.05.cp, 61.20.Ja, 61.25.Mv, 81.05.Bx


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. I. Polmear, Light Alloys — From Traditional Alloys to Nanocrystals (Amsterdam: Elsevier: 2005).
  2. D. Batalu, G. Coşmeleaţǎ, and A. Aloman, U.P.B. Sci. Bull., Ser. B, 68, No. 4: 77 (2006).
  3. O. Zobac, A. Kroupa, A. Zemanova, and K. W. Richter, Metall. Mater. Trans. A, 50, No. 8: 3805 (2019). Crossref
  4. D. S. Kanibolotsky, O. A. Bieloborodova, N. V. Kotova, and V. V. Lisnyak, J. Therm. Anal. Calorim., 70: 975 (2002). Crossref
  5. Ю. О. Есин, Н. П. Бобров, М. С. Петрушевский, П. В. Гельд, Изв. Акад. наук СССР. Металлы, № 5: 104 (1974).
  6. L. H. Xiong, X. D. Wang, Q. P. Cao, D. X. Zhang, H. L. Xie, T. Q. Xiao, and J. Z. Jiang, J. Phys. Condens. Matter, 29, No. 3: 035101 (2017). Crossref
  7. H. Maeda, T. Tanimoto, H. Terauchi, and M. Hida, phys. status solidi A, 58, No. 2: 629(1980). Crossref
  8. A. Fontaine, P. Lagarde, A. Naudon, D. Raoux, and D. Spanjaard, Philos. Mag. B, 40, No. 1: 17 (1979). Crossref
  9. D. Waasmaier and A. Kirfel, Acta Crystallogr. Sec. A, 51: 416 (1995). Crossref
  10. А. С. Лашко, Вопросы физики металлов и металловедения, 6: 66 (1955).
  11. R. L. McGreevy, J. Phys. Condens. Matter, 13, No. 46: 877 (2001). Crossref
  12. Н. Ю. Константинова, А. Р. Курочкин, А. В. Борисенко, В. В. Филиппов, П. С. Попель, Металлы, № 2: 157 (2016). Crossref
  13. Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, S. Eckert, B. Willers, and K. Eigenfeld, Metall. Mater. Trans. A, 39, No. 12: 3040 (2008). Crossref
  14. Н. Н. Медведев, В. П. Волошин, Ю. И. Наберухин, ЖСХ, 30, № 2: 98 (1989). Crossref
  15. Yu. I. Naberukhin, V. P. Voloshin, and N. N. Medvedev, Mol. Phys., 73, No. 4: 917 (1991). Crossref
  16. O. S. Roik, O. V. Samsonnikov, V. P. Kazimirov, and V. E. Sokolskii, J. Mol. Liq., 145, No. 3: 129 (2009). Crossref
  17. O. S. Roik, V. P. Kazimirov, V. E. Sokolskii, and S. M. Galushko, J. Non-Cryst. Solids, 364: 34 (2013). Crossref