Energy and Power Parameters of Rolling Profiles for Wheel Rims of Reduced Metal Intensity with Toroidal Flanges

V. V. Chigirinsky$^{1}$, I. E. Volokitina$^{2}$

$^{1}$Rudny Industrial Institute, 38 50 Let Oktyabrya Str, KZ-111500 Rudny, Kazakhstan
$^{2}$Карагандинский индустриальный университет, просп. Республики, 30, 101400 Темиртау, Республика Казахстан

Получена: 08.10.2023; окончательный вариант - 15.11.2023. Скачать: PDF

The article contains experimental evaluation of technological possibilities of the wave-shaped profiles and confirmation of classical metal flow on profiles of wheel rims with toroidal flanges. The following parameters are recorded during the experiments: temperature in the finishing gauge, rolling force in the 2$^{nd}$, 4$^{th}$, 6$^{th}$ and 7$^{th}$ passes, current, voltages and motor speeds. The analysis of experimental data of rolling profiles 7.0-20-03, 8.5-20-03 and 228G-020-01 shows that technological capabilities of special rolled products for the truck wheel rims with wavy central part are much higher than serial profiles, where the central zone is of rectangular shape. It is possible to reduce the mass of profiles without changing the process parameters, $i.e.$, rolling force and torque. This indicates the influence of additional and kinematic effects on the deformation zone in real production conditions.

Ключевые слова: wheel rims, metal intensity, energy and power parameters, rolling, workpiece.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i04/0343.html

PACS: 46.70.-p, 62.20.-x, 62.40.+i, 81.20.Wk, 81.40.Ef, 83.50.Uv


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. A. A. Nester, O. S. Drobot, and O. O. Nikitin, Metallofiz. Noveishie Tekhnol., 44, No. 4: 471 (2022) (in Ukrainian). Crossref
  2. I. E. Volokitina, Prog. Phys. Met., 24, No. 3: 593 (2023). Crossref
  3. I. E. Volokitina, A. V. Volokitin, M. A. Latypova, V. V. Chigirinsky, and A. S. Kolesnikov, Prog. Phys. Met., 24, No. 1: 132 (2023). Crossref
  4. A. Denissova, Y. Kuatbay, and Y. Liseitsev, Case Studies in Construction Materials, 19: e02346 (2023). Crossref
  5. I. E. Volokitina, Prog. Phys. Met., 24: No. 3: 593 (2023). Crossref
  6. A. Bychkov and A. Kolesnikov, Metallogr. Microstruct., Anal., 12: 564 (2023). Crossref
  7. V. V. Chigirinsky, Y. S. Kresanov, and I. E. Volokitina, Metallofiz. Noveishie Tekhnol., 45: No. 4: 467 (2023). Crossref
  8. N. V. Ruzanov, M. A. Bolotov, V. A. Pechenin, and E. R. Matek, Key Eng. Mater., 769: 242 (2018). Crossref
  9. V. V. Chigirinsky, Y. S. Kresanov, and I. E. Volokitina, Metallofiz. Noveishie Tekhnol., 45: No. 5: 651 (2023). Crossref
  10. Yu. Ya. Meshkov and G. P. Zimina, Metallofiz. Noveishie Tekhnol., 44, No. 6: 807 (2022) (in Ukrainian). Crossref
  11. V. Chigirinsky and O. Naumenko, East.-Eur. J. Enterp. Technol., 5: 27 (2019). Crossref
  12. O. I. Gorbatov, Yu. N. Gornostyrev, P. A. Korzhavyi, and A. V. Ruban, Phys. Met. Metallogr., 117: 1293 (2016). Crossref
  13. N. V. Ruzanov, M. A. Bolotov, V. A. Pechenin, N. D. Pronichev, and E. R. Stepanova, Procedia Eng., 176: 529 (2017). Crossref
  14. B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies in Construction Materials, 18: e02162 (2023). Crossref