Inhomogeneous Resistivity of Transparent Superconductor Films Revealed by the Van Der Pauw Technique

A. Shapovalov$^{1}$, D. Menesenko$^{1,2}$, E. Zhitlukhina$^{3,4}$, A. Parra$^{5}$, A. Aliev$^{5}$, V. Shamaev$^{6}$, M. Gregor$^{4}$, T. Plecenik$^{4}$

$^{1}$Киевский академический университет НАН и МОН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{2}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{3}$Донецкий физико-технический институт им. А. А. Галкина НАН Украины, ул. Р. Люксембург, 72, 83114 Донецк, Украина
$^{4}$Centre for Nanotechnology and Advanced Materials, Comenius University Bratislava, F2 Mlynská dolina, 84248 Bratislava, Slovak Republic
$^{5}$Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, 800 West Campbell Road., TX-75080 Richardson, USA
$^{6}$Донецкий национальный технический университет, пл. Шибанкова, 2, 85300 Покровск, Украина

Получена: 08.04.2024; окончательный вариант - 06.05.2024. Скачать: PDF

Detection of structural and transport inhomogeneities in superconducting thin films using the standard four-probe method requires multiple measurements and may be inaccurate. A new approach to extract the information about the inhomogeneous transition into the superconducting state using van der Pauw technique is presented. The proposed method is applied to an electrochemically-reduced In–Sn-oxide (ITO) films known to be simultaneously transparent and superconducting. Relationship between the processing parameters and superconducting characteristics of the ITO films is considered, and prospects for using such samples in integrated photonic-superconducting chips for quantum-information processing are discussed.

Ключевые слова: transparent superconductivity, doped In–Sn oxide, four-point resistance, temperature and angular dependences.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i06/0517.html

PACS: 73.63.Rt, 74.25.Gz, 74.78.-w, 74.81.-g, 75.47.Lx, 84.37.+q, 85.25.Am


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. H. Wang, W. Porter, H. Bottner, J. Konig, L. Chen, S. Bai, T. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater., 42: 654 (2013). Crossref
  2. L. J. van der Pauw, Philips Res. Rep., 13: 1 (1958).
  3. L. J. van der Pauw, Philips Tech. Rev., 20: 220 (1958).
  4. D. W. Koon and C. J. Knickerbocker, Rev. Sci. Instrum., 63: 207 (1992). Crossref
  5. S. B. Kjeldby, O. M. Evenstad, S. P. Cooil, and J. W. Wells, J. Phys.: Condens. Matter, 29: 394008 (2017). Crossref
  6. M. Poláčková, E. Zhitlukhina, M. Belogolovskii, M. Gregor, T. Plecenik, and P. Seidel, Eur. Phys. J. Plus, 138: 486 (2023). Crossref
  7. M. Belogolovskii, M. Poláčková, E. Zhitlukhina, B. Grančič, L. Satrapinskyy, M. Gregor, and T. Plecenik, Sci. Rep., 13: 19450 (2023). Crossref
  8. H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, Appl. Phys. Lett., 76: 2740 (2000). Crossref
  9. N. Mori, J. Appl. Phys., 73: 1327 (1993). Crossref
  10. A. E. Aliev, K. Xiong, K. Cho, and M. B. Salamon, Appl. Phys. Lett., 101: 252603 (2012). Crossref
  11. A. E. Aliev, M. Jung de Andrade, and M. B. Salamon, J. Supercond. Nov. Magn., 29: 1793 (2016). Crossref
  12. X.-B. Xu, W.-T. Wang, L.-Y. Sun, and C.-L. Zou, Chip, 1: 100016 (2022). Crossref
  13. Y. K. Kwong, K. Lin, P. J. Hakonen, M. S. Isaacson, and J. M. Parpia, Phys. Rev. B, 44: 462 (1991). Crossref
  14. E. Rudenko, D. Solomakha, I. Korotash, P. Febvre, E. Zhitlukhina, and M. Belogolovskii, IEEE Trans. Appl. Supercond., 27: 1800105 (2016). Crossref
  15. J. M. Gordon and A. M. Goldman, Phys. Rev. B, 34: 1500 (1986). Crossref
  16. A. K. Singh, U. Kar, M. D. Redell, T. C. Wu, W. H. Peng, B. Das, S. Kumar, W.-C. Lee, and W. L. Lee, npj Quantum Mater., 5: 45 (2020). Crossref
  17. S. V. Postolova, A. Yu. Mironov, M. R. Baklanova, V. M. Vinokur, and T. I. Baturina, Sci. Rep., 7: 1718 (2017). Crossref
  18. J. Wan, S. D. Lacey, J. Dai, W. Bao, M. S. Fuhrer, and L. Hu, Chem. Soc. Rev., 45: 6742 (2016). Crossref
  19. M. S. Stark, K. L. Kuntz, S. J. Martens, and S. C. Warren, Adv. Mater., 31: 1808213 (2019). Crossref
  20. L. Liu, S. Yellinek, I. Valdinger, A. Donval, and D. Mandler, Electrochim. Acta, 176: 1374 (2015). Crossref
  21. M. A. Belogolovskii, Y. F. Revenko, A. Y. Gerasimenko, V. M. Svistunov, E. Hatta, G. Plitnik, V. E. Shaternik, and E. M. Rudenko, Low Temp. Phys., 28: 391 (2002). Crossref
  22. E. Batson, M. Colangelo, J. Simonaitis, E. Gebremeskel, O. Medeiros, M. Saravanapavanantham, V. Bulovic, P. D. Keathley, and K. K. Berggren, Supercond. Sci. Technol., 36: 055009 (2023). Crossref
  23. A. Walsh, J. L. Da Silva, S.-H. Wei, C. Körber, A. Klein, L. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange, and R. G. Egdell, Phys. Rev. Lett., 100: 167402 (2008). Crossref
  24. R. Woods-Robinson, Y. Xiong, J.-X. Shen, N. Winner, M. K. Horton, M. Asta, A. M. Ganose, G. Hautier, and K. A. Persson, Matter, 6: 3021 (2023). Crossref
  25. E. Zhitlukhina, M. Belogolovskii, and P. Seidel, IEEE Trans. Appl. Supercond., 28: 1700205 (2018). Crossref
  26. S. Khan, B. A. Primavera, J. Chiles, A. N. McCaughan, S. M. Buckley, A. N. Tait, A. Lita, J. Biesecker, A. Fox, D. Olaya, R. P. Mirin, S. W. Nam, and J. M. Shainline, Nat. Electron., 5: 650 (2022). Crossref