Abnormal Effect of Changing the Wetting Angle in Non-Equilibrium Melt–Solid Metal Systems

E. Ph. Shtapenko$^{1}$, Yu. V. Syrovatko$^{1,2}$

$^{1}$Украинский государственный университет науки и технологии, пер. Гагарина, 4, 49100 Днепр, Украина
$^{2}$Dnipropetrovs’k Branch of the State Institution ‘Soils Protection Institute of Ukraine’, 65a Naukova Str., UA-52071 Doslidne, Ukraine

Получена: 04.01.2024; окончательный вариант - 11.03.2024. Скачать: PDF

The paper deals with the temperature dependence of the contact angle of wetting of a steel substrate with a liquid tin. The experiment shows that the wetting angle is decreased as the temperature rose, and the wettability of this system is improved. However, with the further increase in temperature, the contact angle is increased again that is an abnormal phenomenon. To explain this phenomenon and the process of contact-angle formation in general, we propose the quantum mechanical model based on the Wentzel–Kramers–Brillouin (WKB) conception. In this case, interaction of the melt ions with the substrate atoms is considered indirectly through the formation of a potential barrier with the linear dimensions determined by both the ratio of masses of the atoms of interacting metals and the temperature. From the WKB standpoint, at low temperatures, when the kinetic energy of a generalized particle with the reduced mass is less than the potential barrier, the wave function decays rapidly and, accordingly, the contact angle does not actually change. Quantitative and qualitative changes appear, when the kinetic energy of particles with the reduced mass exceeds the positive barrier values because of increase in temperature. Following the WKB conception, passage or reflection of a particle with the reduced mass over the barrier is determined by the integer or half-integer ratio of the de Broglie wavelength and linear dimensions of the potential barrier. Therefore, qualitative changes in the system, i.e., the wetting threshold and abnormal increase in the contact angle, are described by the processes associated with passage or reflection of a particle with the reduced mass over the barrier. Experimental and theoretical curves of dependences of both the contact angle and the work of adhesion versus temperature show similar dynamics.

Ключевые слова: temperature dependence of wetting angle, work of adhesion, passage of a particle over the potential barrier, reflection of the particle from the potential barrier, de Broglie wave, quantum number.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i08/0717.html

PACS: 05.70.Np, 06.60.Wa, 68.08.Bc, 68.35.Np, 73.40.Jn


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. M. Malaki, A. F. Tehrani, B. Niroumand, and M. Gupta, Metals, 11, No. 7: 1034 (2021). Crossref
  2. D. Kumar Rajak, D. D. Pagar, R. Kumar, and C. I. Pruncu, J. Mater. Res. Technol., 8, No. 6: 6354 (2019). Crossref
  3. D. Kumar Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, Polymers, 11, No. 10: 1667 (2019). Crossref
  4. O. V. Sukhova and Yu. V. Syrovatko, Metallofiz. Noveishie Tekhnol., 41, No. 9: 1171 (2019) (in Russian). Crossref
  5. O. V. Sukhova and Yu. V. Syrovatko, J. Phys. Electronics, 26, No. 2: 29 (2018). Crossref
  6. J. Avenet, A. Levy, J.-L. Bailleul, S. L. Corre, and J. Delmas, Composites A: Appl. Sci. Manufact., 138: 106054 (2020). Crossref
  7. F. Delannay, L. Froyen, and A. Deruyttere, J. Mater. Sci., 22: 1 (1987). Crossref
  8. Y. Wang, C. J. Hansen, C.-C. Wu, E. J. Robinettec, and A. M. Peterson, RSC Adv., 11: 31142 (2021). Crossref
  9. C. Bistafa, D. Surblys, H. Kusudo, and Ya. Yamaguchi, J. Chem. Phys., 155, No. 6: 064703 (2021). Crossref
  10. R. A. Kutuev, Adv. Eng. Res., 177: 152 (2018).
  11. P. Fiflis, A. Press, W. Xu, D. Andruczyk, D. Curreli, and D. N. Ruzic, Fusion Eng. Des., 89: 2827 (2014). Crossref
  12. D. A. Kambolov, A. Z. Kashezhev, R. A. Kutuev, P. K. Korotkov, A. R. Manukyants, M. Kh. Ponezhev, and V. A. Sozaev, J. Surf. Investigation. X-ray, Synchrotron and Neutron Techniques, 9: 636 (2015). Crossref
  13. N. V. Dalakova, K. M. Elekoeva, A. Z. Kashezhev, A. R. Manukyants, A. D. Prokhorenko, M. Kh. Ponezhev, and V. A. Sozaev, J. Surf. Investigation. X-ray, Synchrotron and Neutron Techniques, 8: 360 (2014). Crossref
  14. M. Kondo and J. Matsumoto, Computer Methods Appl. Mech. Eng., 385: 114072 (2021). Crossref
  15. M. Provenzano, F. M. Bellussi, M. Morciano, E. Rossi, M. Schleyer, P. Asinari, T. Straub, M. Sebastiani, and M. Fasano, Mater. Des., 231: 112042 (2023). Crossref
  16. N. Mukai, T. Natsume, M. Oishi, and M. Oshima, Proc. 18th Int. Joint Conf. on Computer Vision, Imaging and Computer Graphics Theory and Applications (Feb. 19–21, 2023) (Lisbon: VISIGRAPP: 2023), vol. 1, p. 230. Crossref
  17. J.-Y. Lu, C.-Y. Lai, I. Almansoori, and M. Chiesa, Phys. Chem. Chem. Phys., 20: 22636 (2018). Crossref
  18. J. Y. Lu, Q. Ge, H. Li, A. Raza, and T. J. Zhang, J. Phys. Chem. Lett., 8, No. 21: 5309 (2017). Crossref
  19. J. Y. Lu, Q. Ge, A. Raza, and T. J. Zhang, J. Phys. Chem. C, 123, No. 20: 12753 (2019). Crossref
  20. H. Peng, A. V. Nguyen, and G. R. Birkett, Molecular Simulation, 38, No. 12: 945 (2012). Crossref
  21. B. Zhang, H. Li, Z. W. Zhu, H. M. Fu, A. M. Wang, C. Dong, H. F. Zhang, and Z. Q. Hu, Mater. Sci. Technol., 29, No. 3: 332 (2013). Crossref
  22. S. Mettu, M. Kanungo, and K. Law, Langmuir, 29, No. 34: 10665 (2013). Crossref
  23. D. Varanasi, K. E. Aldawoudi, P. Baumli, D. Koncz-Horvath, and G. Kaptay, Arch. Metall. Mater., 66, No. 2: 469 (2021). Crossref
  24. S. I. Popel, V. N. Kozhurkov, and T. V. Zakharova, Zashchita Metallov, 7, No. 4: 421 (1971) (in Russian).
  25. G. V. Beketov and O. V. Shynkarenko, Him. Fiz. Tehnol. Poverhni, 13, No. 1: 3 (2022). Crossref
  26. V. T. Shipatov and P. P. Seregin, Theoretical Exp. Chem., 8: 343 (1974). Crossref
  27. O. V. Sukhova and Yu. V. Syrovatko, Visnyk ZhDTU, 82, No. 2:189 (2018) (in Ukrainian).